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Introduction

During a forensic investigation, digital storage medias must be analyzed to find potential

evidence of a suspected crime. However, criminals will often try to hide such incriminating

files.  Sometimes,  advanced  methods  are  used  such  as  encryption  or  complex

steganography. But most of the time, suspects don’t have a very high technical level and

will thus hide evidences by basic means. In our experiments, we mostly focused on file

extension tampering, files moved in unexpected locations, and files marked as hidden.

Analysis of whole drives cannot be done manually as modern storage devices can reach

terabytes capacities and the time available for investigation is limited. Therefore, we need

automated  tools  to  perform  a  first  processing  quickly  in  order  to  reduce  the  work  for

human investigators.  In  this  paper,  we’ll  focus on file  triage,  namely  filter  uninteresting

files while prioritizing suspicious contents for further analysis.

Our  goal  is  first  and  foremost  to  detect  intentionally  concealed  files,  but  also  to  filter

known benign content, and all that as quickly as possible.
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State of the art

Before starting to design our own analysis software, we explored the current state of the

art  of  file triage methods in order to take advantage of the most promising techniques.

This led us to establish the following taxonomy:

File signature

For  a  given  file,  it’s  possible  to  identify  its  type  based  on  its  content  and  not  on  its

extension. If the type found is different from what the extension suggests, we can deduct

that the extension has been intentionally changed in an attempt to conceal the file and so

it can be considered suspicious.

Many file formats contain a constant sequence of bytes, usually at the very start of the

file,  that identify the file type. This sequence is called the  “magic number”.  It’s used to

identify  file  types  on  UNIX  systems.  A  database  containing  magic  numbers  in

correspondence  with  their  associated  file  types  is  usually  present  at

/usr/share/misc/magic.mgc  on  Debian  based  distributions.  Most  file  identification

programs use a similar database in addition to heuristics and format-specific analysis to

determine file type.

In  a  study  from  2023[1],  it  has  been  shown  that  we  can  achieve  great  results  by

combining multiple tools together. On a 1M files dataset, Fidentify (a tool using the same

database  as  the  famous  open  source  tool  PhotoRec)  achieves  a  98.1%  accuracy.

Researchers have reached 98.3% by combining it with  ForENSIque, a software created

by ENSICAEN students.

This technique thus works very well to detect files with tampered extension. Depending

on the investigation case,  we can prioritize  the analysis  by  assigning higher  scores to

specific  types  of  files.  For  instance,  documents  in  financial  fraud  investigations  or
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multimedia files in a child abuse case. However, this technique is useless if the extension

was left  intact  but  the file was hidden by other ways,  such as by being placed into an

unusual, usually legitimate directory. This is why other methods are needed.

Machine learning

File type identification can also be achieved using machine learning based approaches.

This is what Sester et al.[2] did in 2021, by experimenting with support vector machines

(SVM) and neural networks. They reached a maximum accuracy of 91.4% using an SVM

with a linear kernel.

This approach can be enhanced by directly carrying out the training on the relevance of

the files instead of their  file type. That simplifies the problem by removing one level  of

indirection and allows the identification of  suspicious files based on other factors.  With

this  technique,  Serhal  &  Le-Khac[3] achieved  a  99.8%  accuracy  score  using  random

forests, K-nearest neighbor and classification and regression trees.

Hash databases

Sometimes, suspects try to hide their files inside benign directories in an attempt to get

their data  lost in the file system hierarchy under legitimate folders. The files can thus be

located  inside  system  directories  such  as  C:\Windows\System32 ,  in  software  data

directories  such  as  C:\Program Files\Mozilla Firefox  or  in  cache folders  such  as

C:\Users\User\AppData\Local\  subdirectories. Locating hidden files then becomes the

needle and haystack problem.

One solution is to compute the hash of all files inside these known folders and compare

them with a pre-computed hash database[4]. Such a database contains a list of file hash

that are known to be legitimate (system files, applications files, etc.). If the hash of a file is

in this database, it can then be considered benign. However, if a file is not found in the

database but is located inside a known folder,  it  could mean it  does not belong to this

directory and has been placed here intentionally by the user. Therefore, the file can be

considered suspicious.

Fortunately, such hash databases already exist such as the National Software Reference

Library Reference  Data  Set  or  RDS for  short,  distributed  by  the  US government.  This

database contains a large set of file hashes belonging to known software and operating

systems, along with information on their  provenance and metadata such as original file

name and size. If  a file hash is present in this database, we can conclude with a high

level of confidence that this file is not suspicious.
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Some programs have already been designed to perform the database lookup for a given

set of files. The  md5deep suite is a collection of programs that can be used to compute

the hash of  all  files  within  a  directory  and display  only  files  for  which  the  hash is  not

present in a given hash database.

The method can also be used the other way around: comparing file hashes with a pre-

computed database of  illegal content. That way, if  a file matches, it  can be considered

suspicious  with  a  very  high  degree  of  certainty.  However,  this  method will  only  detect

already known content such as multimedia files obtained in violation of copyright. It won’t

be  able  to  detect  new  or  unique  content  such  as  personal  pictures  or  confidential

corporate documents.

The main limitation with methods based on hash databases is that they only work if files

are exactly the same. If at least one byte differs, the hashes will be different and so no

match will  be found.  To overcome this  issue,  several  studies[5][6][7] experimented with

sector hashing and piecewise hashing, with the aim to partially match similar files. This

way,  new  content  which  is  similar  enough  to  already  known  files  will  be  detected  or

whitelisted (depending on the type of the database). Some existing tools such as ssdeep

and sdhash can achieve that to a certain extent.

Additional heuristics

In addition to the previously described methods, some heuristics can be employed while

searching the file system to further improve the detection rate and defeat other ways to

hide  content,  but  also  to  filter  uninteresting  files.  The  most  important  heuristics  are

described here.

Hidden attribute

The NTFS file system, which is the default for Windows systems, allows setting a hidden

attribute  on files  and folders,  thus  making them disappear  from the Windows Explorer

with  default  configuration.  This  feature  can  be  used  by  the  user  to  conceal  data[8].

However, since this technique modifies the file’s metadata in a clearly identifiable way, it’s

rather easy to list all files with the hidden attribute set. If some of them are located within

user  data  directories  ( Documents ,  Images ,  Desktop …)  we  can  assume  that  the

attribute  has  been  deliberately  set  by  the  user,  and  thus  the  file  can  be  considered

suspicious.
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Timestamp coherence

Most of the time, software files created during the installation are written at the same date

and thus have very near timestamps. Therefore, if a software folder contains a file with a

timestamp (created or  modified)  which is  more recent  than the rest  of  the  directory,  it

could mean it have been placed here later manually, probably with the aim to hide the file.

This can be the sign of a suspicious content.

Size filtering

According to some studies[9][10],  interesting files usually have a size which is above a

specific  threshold,  depending  on  the  file  type.  We can therefore  filter  all  files  that  are

smaller than this size threshold as they are unlikely to contain relevant content.

Filtering groups of files created in a very short time

According to Neil C. Rowe[10:1], files with very near creation timestamps are likely to be

uninteresting:

TM, clustered creation times: Files with the same creation time within a short

period  as  that  of  many  other  files  on  the  same  drive.  Such  time  clusters

suggest automated copying from an external source, particularly if the rate of

creation exceeded human

limits

Thus, groups of file with near creation time can be filtered. However, this rule should be

used  carefully  as  it  could  exclude  interesting  files  as  well,  for  example  if  the  user

extracted an archive content.

Similar metadata

A  file  with  similar  name  or  timestamp  as  another  detected  suspicious  file  can  be

considered suspicious, as it could indicate a group of related files[11][12].

Interesting date and file name

Sometimes,  forensic  investigators  know  some  details  about  the  evidences  they  are

looking for, such as in which time range they were created, or how they are likely to be

named. Thus, the analysis of files with timestamps close to the given date[11:1] or with

suspicious keywords in their names can be prioritized.
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Timestamp forgery

Suspects  can use software to  change timestamps of  files  they want  to  hide.  However,

many  of  these  software  only  change  visible  timestamps,  while  leaving  other  hidden

metadata  intact.  By  leveraging  the  file  system design,  it’s  therefore  possible  to  detect

timestamp  incoherence[13] and  thus  conclude  to  an  intentional  tampering.  A  file  with

detected timestamp forgery should be considered as suspicious.

Our implementation

The analysis program has been written in C++. It incorporates an implementation of file

type  identification,  hash  database  based  filtering  and  detection,  plus  some  other

heuristics,  including  hidden  file  detection  as  well  as  timestamp  and  filename  targeted

searches.  All  of  these  detection  methods  that  can  be  switched  on  and  off  at  runtime,

enabling the effectiveness of each technique to be studied individually or in combination.

We followed a modular architecture pattern to be easily able to add new detection rules.

File type identification

The type detection has been implemented by leveraging fidentify , as it was identified

as the most accurate tool according to a study from 2023[1:1]. To speed up the analysis,

we decided to statically link the  fidentify  binary into our software instead of invoking

the executable for each file. This way, we replace all the overhead of process creation by

a simple function call, which make the analysis faster and more efficient. To achieve this,

we  included  the  testdisk  source  code  as  a  git  submodule  inside  our  tree,  and

modified  the  fidentify.c  file  to  be  callable  as  a  library.  Then  we  integrated  the

testdisk  build process into our build system (CMake).

As multiple file extensions can actually refer to the same file format, we created a simple

extension map which associates generic extensions (i.e.  .zip ) with a set of legitimate

extensions which could  correspond to  this  file  format  (i.e.  .jar ,  .apk ).  It’s  currently

implemented  as

std::unordered_map<std::string_view,  std::unordered_set<std::string_view>> ,

allowing to perform lookups in constant time on average.
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Hash database

Our  file  hashing  implementation  follows  the  NIST’s  RDS schema:  file  are  hashed

individually  and  looked  up  in  a  SQL  database.  The  hash  is  either  a  MD5,  SHA1  or

SHA256 of the file content. It doesn’t include file metadata such as filename, location, or

timestamps. After a quick benchmark, we decided to use SHA1 as it turned out to be the

fastest of the three.

$ openssl speed md5 sha1 sha256

[...]

The 'numbers' are in 1000s of bytes per second processed.

type     16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes  16384 bytes

md5      33575.38k   107869.22k   269526.73k   443219.84k   530852.52k   

463983.96k

sha1     46415.05k   166869.38k   604677.97k  1285292.37k  1755116.89k  

1824964.61k

sha256   67907.21k   236246.27k   658070.61k   892167.02k  1121880.75k  

1155674.76k

MD5 should theoretically be faster but SHA1 leverages hardware acceleration on modern

processors.

Our current implementation uses SQLite as its database system for simplicity. To speed

up hash lookups, we created an index over the sha1  column.

The  analysis  program  computes  hashes  for  each  file  in  the  current  directory  (non-

recursively), and lookup them in the database. Recognized files are whitelisted, and thus

do not undergo further analysis. If more than half of the files in the current directory are

matched in the database, the current directory is considered known. Each unknown file in

a known directory or subdirectory (recursively) is considered suspicious.
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Heuristics

Hidden files

Our hidden file detector expects the target root directory of  the analysis to be the root

mountpoint of an operating system. In other words, the analysis must be performed on a

whole drive for this detector to be useful.

Currently, hidden files are searched only on Windows, and platforms following the  XDG

standard.  On  Windows,  files  with  the  hidden  attribute  placed  under  Desktop , 

Downloads ,  Documents ,  Music ,  Pictures  or  Videos  folders  are  considered

suspicious.  On  other  platforms,  files  located  within  directories  specified  in

~/.config/user-dirs.dirs  with names starting with a dot  are considered suspicious.

Usually, this concerns DESKTOP ,  DOWNLOADS ,  DOCUMENTS ,  MUSIC ,  PICTURES ,  VIDEOS , 

TEMPLATES  and PUBLIC  folders.

Since the analysis  program is  designed to  run on POSIX systems,  we use the ntfs-3g

extended  attributes to  detect  the  hidden  flag  on  NTFS  partitions.  The  use  of  another

NTFS driver thus requires it to set compatibles attributes.

Size filtering

All  files  under  6  bytes  are  skipped.  Raising  this  threshold  will  speed  up  the  analysis

process  and  might  lower  the  amount  of  false  positives,  but  may  also  miss  some

suspicious files.

Keyword and timestamp search

When  the  investigator  has  some  information  about  the  sought  evidences,  they  can

provide some additional details at runtime to the program, such as a list of suspicious file

name  substrings  and  a  target  timestamp  range.  Files  matching  these  criteria  will  be

reported as suspicious.
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Performance optimization

In real forensic cases, time is limited. It’s crucial to deliver results as quickly as possible.

Therefore, we tried to optimize our existing software in order to achieve higher speeds.

Profiling

We started by profiling the analysis  program with  callgrind to  identify  the performance

bottlenecks of the code.

$ valgrind --tool=callgrind ./analyze ...

$ callgrind_annotate callgrind.out.96 

--------------------------------------------------------------------------------

Profile data file 'callgrind.out.96' (creator: callgrind-3.22.0)

--------------------------------------------------------------------------------

I1 cache: 

D1 cache: 

LL cache: 

Timerange: Basic block 0 - 7471024364

Trigger: Program termination

Profiled target:  ./analyze ... (PID 96, part 1)

Events recorded:  Ir

Events shown:     Ir

Event sort order: Ir

Thresholds:       99

Include dirs:     

User annotated:   

Auto-annotation:  on

--------------------------------------------------------------------------------

Ir                       

--------------------------------------------------------------------------------

126,518,478,058 (100.0%)  PROGRAM TOTALS

--------------------------------------------------------------------------------

Ir                        file:function

--------------------------------------------------------------------------------

119,577,351,348 (94.51%)  ???:SHA1Transform [/usr/lib/libmd.so.0.1.0]

  4,961,008,303 ( 3.92%)  ???:0x0000000000157c80 [/usr/lib/libc.so.6]

    734,166,789 ( 0.58%)  ???:SHA1Update [/usr/lib/libmd.so.0.1.0]

As  shown  above,  we  found  that  a  very  high  percentage  of  the  global  program’s

instructions are executed within the  SHA1Transform()  function. This function is part of

libmd,  and  is  called  by  the  SHA1File() ,  which  we directly  use  in  the  hash  database

code. In other words, this means most of the time is spent computing SHA1 digests of file
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contents with libmd. Therefore, we decided to try other libraries, with the hope to find a

faster SHA1 implementation.

SHA1 implementations benchmark

To compare the speed of different SHA1 implementations, we wrote a simple benchmark

code that computes 10,000 iterations of the SHA1 algorithm over a 1MB random buffer

with all selected implementations, while measuring overall time spent by each of them.

We  selected  OpenSSL,  an  independent  C  library  called  racrypt,  and  a  simple

implementation  leveraging  x86  SHA1  native  instructions  (SHA-Intrinsics).  We  also

included  libmd  for  reference  in  the  benchmark.  The  test  was  run  on  a  Debian  Linux

machine with an x64 processor, with -O3  and -march=native  compile options. Here are

the results we obtained:

$ ./run.sh

Compiling...

Starting...

Racrypt: 10797ms

Intrinsics: 9131ms

OpenSSL: 8967msms

libmd: 28791ms

We can see that  libmd is  the slowest  of  these implementations,  almost  3 times slower

than the others.  The fastest are OpenSSL and SHA-Intrinsics,  with a ranking changing

from run to run. OpenSSL being a very popular and widely available library, we decided to

choose it.

Final benchmark

After editing our code to replace libmd function calls by their OpenSSL counterparts, we

ran  benchmarks  using  hyperfine to  measure  the  global  speedup  by  comparing  the

execution times of both versions.

12

https://www.openssl.org
https://github.com/sosaria7/racrypt
https://github.com/noloader/SHA-Intrinsics
https://github.com/sharkdp/hyperfine


$ hyperfine './analyze_libmd --timestamp 0 --timestamp-threshold 5 -d Testing/

rds.sqlite3 -k Testing/keywords.txt Testing/root' './analyze_openssl --timestamp 0 

--timestamp-threshold 5 -d Testing/rds.sqlite3 -k Testing/keywords.txt Testing/

root'

Benchmark 1: ./analyze_libmd --timestamp 0 --timestamp-threshold 5 -d Testing/

rds.sqlite3 -k Testing/keywords.txt Testing/root

  Time (mean ± σ):      2.572 s ±  0.139 s    [User: 1.303 s, System: 1.267 s]

  Range (min … max):    2.423 s …  2.824 s    10 runs

Benchmark 2: ./analyze_openssl --timestamp 0 --timestamp-threshold 5 -d Testing/

rds.sqlite3 -k Testing/keywords.txt Testing/root

  Time (mean ± σ):     791.3 ms ±  21.7 ms    [User: 471.0 ms, System: 319.8 ms]

  Range (min … max):   754.3 ms … 819.0 ms    10 runs

Summary

  ./analyze_openssl --timestamp 0 --timestamp-threshold 5 -d Testing/rds.sqlite3 -

k Testing/keywords.txt Testing/root ran

    3.25 ± 0.20 times faster than ./analyze_libmd --timestamp 0 --timestamp-

threshold 5 -d Testing/rds.sqlite3 -k Testing/keywords.txt Testing/root

In  conclusion,  for  the  same  arguments  and  the  same  target  directory,  our  analysis

program is now more than 3 times faster. That’s an impressive performance gain.

Evaluation protocol

To evaluate the efficiency and accuracy of the technique implementations, we applied the

following protocol:

Create  a  legitimate  drive  by  installing  an  operating  system on  an  empty  storage

device

Hide content from the dataset by: 

Placing files and directories at random places

Altering their extensions according to the chosen probability distribution by: 

Replacing the extension by a known extension

Replacing the extension by a randomly generated extension

Removing the extension

Keeping the original extension

Creating hidden files and directories in user’s folders (not implemented yet)

Execute each technique on the directory tree and measure their detection rate as

well as their false-positive rate

1. 

2. 

◦ 

◦ 

▪ 

▪ 

▪ 

▪ 

◦ 

3. 
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Dataset

To evaluate the file type identification method, we need a set of files of various formats.

For the hash database based technique, we only require that the files of the dataset are

not part of system or application data, as they could otherwise be whitelisted. The other

detection methods exclusively rely on metadata. Therefore, the semantic of the files is not

relevant. The dataset can thus be composed of arbitrary user files.

Hash database creation

Due  to  a  very  poor  internet  connection  at  home,  and  disk  usage  restrictions  at  the

university, we haven’t been able to download the 106GB of the entire NIST’s RDS. And

because  the  NIST  doesn’t  provide  a  way  to  download  a  subset  of  the  database  for

specific  operating  systems,  we  decided  to  make  our  own  hash  database.  In  order  to

populate it, we wrote a simple C++ program that explores a directory tree and computes

the  SHA1  hash  of  all  regular  files  found  inside.  The  tool  follows  the  RDS  database

schema, but only stores digest values and filenames to keep the database small. It also

handles the index creation. We execute this tool right after the OS installation is complete,

before adding suspicious contents on the drive.

Automation

To automate the evaluation process,  we wrote a small  python script  that  hides content

within the file system. It takes two folders as arguments: the dataset folder containing files

and directories to hide, and the root directory tree in which to hide content.

For  each  source  files  and  directories,  the  script  walk  into  the  destination  directory  by

selecting subdirectories at random. At each level of the hierarchy, the current location is

chosen  with  a  probability  of  5%.  If  the  script  reaches  a  directory  containing  no

subdirectories, it resumes the walk from the root.

This process is not perfect as it tends to select directories near to the root with a higher

probability, but it’s more efficient as it avoids exploring the entire file system.

When a destination directory has been selected, the corresponding source file is copied

there  and  its  extension  may  be  randomly  changed.  With  a  probability  of  40%,  the

extension  is  picked  among  a  list  of  known  file  extensions.  With  20%  chance,  the

extension  is  generated  randomly.  With  a  probability  of  20%,  the  extension  is  simply

removed. The remaining 20% just keep the extension unchanged.

With a 20% probability,  the file  is  hidden.  On Windows OS roots,  it  means setting the

hidden NTFS flag. On others platform roots, the filename is prepended with a dot.
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In  order  to  automatically  generate  an  evaluation  report,  we  added  a  feature  to  the

analysis software that allows to write the detected suspicious files in text  files on disk.

There is one file per detector, containing the paths of the detected files. Once the analysis

is  completed,  we can use the  stats.py  script  to  generate  a  report  from these result

files, showing the accuracy and the number of false positive of each detector, as well as

in combination.

Experiment results

We run the experiment on a freshly installed Linux Mint 21.3 Cinnamon edition inside a

Libvirt virtual machine. Just after installation was complete, we ran the database creation

tool on the guest directories  /usr ,  /etc ,  /boot ,  /root  and  /home  directories. The

other directories  /var ,  /tmp  and /run  contain changing files. They are unlikely to be

identical  on  different  machines.  Thus,  we  don’t  include  them  in  the  database,  at  the

exception  of  /var/lib .  Same  for  /proc ,  /sys  and  /dev ,  which  are  virtual  file

systems. /bin ,  /sbin ,  /lib ,  /lib32 ,  /libx32 , and /lib64  are just symbolic links

to /usr . /opt  and /srv  are empty by default.

To  avoid  modifying  the  original  disk,  we  first  mounted  it  as  read-only.  However,  this

prevents us from copying new files inside.  Therefore,  we created a second mountpoint

using overlayfs to simulate writes. This enables us to virtually hide content inside the file

system without modifying it,  while allowing us to undo the changes in order to run new

tests without interference.

Here are the results  we got  from a 100 files  set  hidden randomly using our  hide.py

script:

Techniques Detection rate False-positives

File type identification 73% 1099

Hash database 35% 11

Timestamp search 100% 0

Hidden files detection 3% 0

All combined 100% 1108

Analysis

File type identification gives a huge amount a false-positives. This is mainly due to the

fact that GNU/Linux systems tend to use extensions in order to specify a file semantic
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rather than a file format.  For example,  the file  /var/log/Xorg.0.log.old  is  just  a log

file.  The extensions  .old  is  used to specify that  it’s  an old version of  the original  file

/var/log/Xorg.0.log .  Similarly,  /usr/sbin/mkfs.ext4  is  an  executable  file.  The

.ext4  extension  specifies  that  it  operates  on  EXT4  file  systems,  unlike

/usr/sbin/mkfs.ext2  which works on EXT2,  or  /usr/sbin/mkfs.fat  that’s  used for

FAT  file  systems.  Sometimes,  no  extension  is  used  at  all,  as  most  programs  in  the

/usr/bin  directory.

To overcome this issue, we could allow the analysis program to filter files according to

their  detected types.  For instance,  in the case of  a CSAM investigation,  we could only

show files detected as image or video for which the actual extension do not correspond.

This way, all libraries, executable, configuration and text files would be filtered out while

still  detecting  media  files  with  tampered  extensions.  By  reducing  the  search  field,  this

method would significantly reduce the amount of false-positives, but on the other hand, it

would miss not requested file types.

However,  on  Windows  systems,  the  accuracy  of  the  extension  tampering  detection

method should be higher.

Hash  database  based  detection  return  a  small  amount  of  false-positive.  In  our

experiments,  this  is  due to  unknown directories like  /var  containing copies of  known

files  (for  example  originating  from  /etc ).  In  real  cases  however,  we  can  expect  the

number of false-positive to be higher, as the actual state of the system might differ from

the database.

The low detection rate of the method is explained by two reasons:

First, files hidden in directories which have not been included in the database populating

process won’t be detected. In our experiment, files located in /tmp  or in /var/log  have

not been detected as these directories were excluded from the hashing process. This is

unfortunately an expected limitation of this method.

Secondly, files hidden in directory containing no files won’t be detected either. Let’s take

the example of the /usr  directory:

/usr

├── bin

├── include

├── lib

├── local

├── sbin

├── share

└── Nasty hidden file.dat

The /usr  directory originally contains only subdirectories and no files. Therefore, /usr

won’t  be  recognized  as  a  known directory  as  it  contains  no  known files,  even  though
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/usr  subdirectories contain only known files. This issue is due to the way the hashing

database has been designed. In its current form, the database only stores hashes of files.

Directories are not taken into consideration at all. A flat file system with every files under

the root  would produce exactly the same database as if  the files were dispatched in a

complex directory hierarchy. To fix this issue, we have to compute hashes of directories

themselves,  in  the  manner  of  a  Merkle  tree.  In  this  example,  as  all  subdirectories  are

known,  /usr  would be marked as known in the database too. Thus, files hidden under

/usr  would be detected.

During  our  experiment,  we  set  the  target  timestamp  range  to  the  day  the  files  were

hidden. Therefore, all of them have been correctly detected. This method didn’t report any

false positive as the virtual machine has not been started that day. In real cases, we can

expect to detect fewer files and have a greater rate of false positives.

The heuristic detecting hidden files only flagged 3 files. This is because only 3 files were

marked hidden and placed in common users directories.

When we mix all these methods, we can reach a very high detection rate by combining

their  respective strengths. The amount of  false positive may decrease in certain of  our

experiments,  but  this  is  not  guaranteed.  In  the  current  state  of  the  software,  when  a

detector incorrectly reports a file as suspicious, the error can only be rectified if its hash

is  present  in  the  hash  database,  or  if  it’s  a  too  small  file.  In  other  words,  any  false

positives larger than the size threshold located in directories non targeted by the hash

database won’t be avoided by combining the existing detection methods.

Areas for improvement

As explained earlier, redesigning the hash database to store Merkle trees of directories

would  probably  improve the  overall  accuracy  and detection  rate  of  the  tool,  but  would

break compatibility  with  the NIST’s  RDS. Therefore,  we should create a new database

format for the Merkle trees based method, while keeping the program compatible with the

standard RDS schema.

Additionally,  the  software  integrability  could  be  improved.  Even  though  we  added  the

ability  to  return  the  results  in  a  structured  form,  we’d  like  to  add  support  for  a  more

standard and robust format such as JSON or TOML, or even allow the results to be stored

in  a  database.  That  way,  the  findings  of  the  analysis  would  be  even  easier  to  be

processed by other tools, and would help integration with larger frameworks.

The  last  improvement  axis  is  about  performance.  Since  the  time  in  which  forensic

investigator  must  give  results  is  limited,  it’s  essential  to  make  the  analysis  as  fast  as

possible.  First,  we  could  speed  up  I/O  by  leveraging  memory  mapped files  instead  of

standard  streams  for  large  contents.  This  should  reduce  the  time  spent  to  read  file
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content  by  avoiding  system  calls  overhead  and  useless  copies.  Then,  the  main

exploration  and  analysis  process  could  be  parallelized.  A  thread  pool  could  be

implemented, to which the analysis tasks of each subdirectory would be dispatched. This

has the potential to multiply the analysis speed by the number of processor core, which

will  be  a  significant  performance  improvement.  Obviously,  the  individual  analysis

components  can  be  enhanced  too.  For  instance,  the  keyword  matching  part  could  be

speeded  up  by  leveraging  the  Aho–Corasick  algorithm,  thus  reducing  the  search

complexity,  and  the  DBMS  used  for  hash  lookups  could  be  replaced  by  a  high-

performance one such as ClickHouse or DuckDB. The hashing algorithm used to match

files could also be changed to a faster, possibly non-cryptographic one such as wyhash

or  XXH3.  However,  this  would  imply  to  recompute  the  hash  database  and  would  also

break compatibility with the NIST’s RDS.

Conclusion

This  paper  outlines the progress and findings of  our  forensic  project.  With  the goal  to

detect suspicious files hidden in a directory hierarchy, we have successfully implemented

several  methods  to  address  this  objective:  extension  tampering  detection  by  file  type

identification,  a  hash  database  based  approach  following  the  NIST’s  RDS  pattern,

suspicious hidden files detection, size based filtering, and a time and filename targeted

search.  Extension  tampering  detection  achieves  a  greater  detection  rate  but  is  less

accurate  with  a  very  high  number  of  false  positives.  On  the  other  hand,  the  hash

database  technique  and  hidden  files  detection  discover  fewer  files  but  are  much  more

precise.  Additionally,  timestamp and filename search  can turn  out  to  be  very  powerful

tools if some information about the case are known. By combining all of these methods,

plus a size-based filter, we were able to achieve very high overall  detection rates while

keeping the ability to maintain a low number of false positives in certain cases. Moreover,

we have other leads to improve the accuracy and detection rate of our tool.

If we had to continue this project, we would have tried to enhance the existing detection

methods, and to optimize the software’s performance, enabling faster and more efficient

detection of concealed files.

Overall,  the  results  obtained  so  far  demonstrate  promising  progress  in  our  pursuit  of

developing an investigation tool for detecting suspicious contents within storage devices.

We hope that  our  solution is  of  sufficiently  good quality  and is  accurate enough to be

actually helpful in real-life use cases.
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Tasks distribution

This report  has been fully  written by Matéo.  He also performed the code profiling and

benchmarks,  as  well  as  the  experiments,  and  designed  the  slides  for  the  two

presentations.

Due to Sylia's lack of work (despite initial equal planning of task distribution), all  of the

code currently used by the program has been completely designed and written by Matéo,

including  the  hashing  program,  the  various  python  scripts,  and  the  build  system

configuration. The documentation has also been written by Matéo.

Sylia has written some proof-of-concept C code for heuristics-based detection under the

src/heuristique  directory of the source tree, which cannot be used as-is.

Even  though  Matéo  designed  an  interface  for  detectors  written  in  C

( src/analyser/ExternFileBasedDetector.cpp )  to  allow Sylia  to  integrate  her  code to

the project (because she has little experience with C++), explained her how to use it, and

provided an example of such integration ( src/analyser/externs/size_filter.h ), Sylia

did not add her code to the analysis program. Therefore, Matéo reimplemented it in C++

in the main program.
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