
Suspicious contents

M1 project report

Matéo Delerue-Houard, Sylia Bouimedj

1

Introduction

During a forensic investigation, digital storage medias must be analyzed to find potential

evidence of a suspected crime. However, criminals will often try to hide such incriminating

files. Sometimes, advanced methods are used such as encryption or complex

steganography. But most of the time, suspects don’t have a very high technical level and

will thus hide evidences by basic means. In our experiments, we mostly focused on file

extension tampering, files moved in unexpected locations, and files marked as hidden.

Analysis of whole drives cannot be done manually as modern storage devices can reach

terabytes capacities and the time available for investigation is limited. Therefore, we need

automated tools to perform a first processing quickly in order to reduce the work for

human investigators. In this paper, we’ll focus on file triage, namely filter uninteresting

files while prioritizing suspicious contents for further analysis.

Our goal is first and foremost to detect intentionally concealed files, but also to filter

known benign content, and all that as quickly as possible.

2

Table of contents

Introduction

Table of contents

State of the art

File signature

Machine learning

Hash databases

Additional heuristics

Hidden attribute

Timestamp coherence

Size filtering

Filtering groups of files created in a very short time

Similar metadata

Interesting date and file name

Timestamp forgery

Our implementation

File type identification

Hash database

Heuristics

Hidden files

Size filtering

Keyword and timestamp search

Performance optimization

Profiling

SHA1 implementations benchmark

Final benchmark

Evaluation protocol

Dataset

Hash database creation

Automation

Experiment results

Analysis

Areas for improvement

Conclusion

Tasks distribution

Bibliography

•

•

•

◦

◦

◦

◦

▪

▪

▪

▪

▪

▪

▪

•

◦

◦

◦

▪

▪

▪

•

◦

◦

◦

•

◦

◦

◦

•

◦

•

•

•

•

3

State of the art

Before starting to design our own analysis software, we explored the current state of the

art of file triage methods in order to take advantage of the most promising techniques.

This led us to establish the following taxonomy:

File signature

For a given file, it’s possible to identify its type based on its content and not on its

extension. If the type found is different from what the extension suggests, we can deduct

that the extension has been intentionally changed in an attempt to conceal the file and so

it can be considered suspicious.

Many file formats contain a constant sequence of bytes, usually at the very start of the

file, that identify the file type. This sequence is called the “magic number”. It’s used to

identify file types on UNIX systems. A database containing magic numbers in

correspondence with their associated file types is usually present at

/usr/share/misc/magic.mgc on Debian based distributions. Most file identification

programs use a similar database in addition to heuristics and format-specific analysis to

determine file type.

In a study from 2023[1], it has been shown that we can achieve great results by

combining multiple tools together. On a 1M files dataset, Fidentify (a tool using the same

database as the famous open source tool PhotoRec) achieves a 98.1% accuracy.

Researchers have reached 98.3% by combining it with ForENSIque, a software created

by ENSICAEN students.

This technique thus works very well to detect files with tampered extension. Depending

on the investigation case, we can prioritize the analysis by assigning higher scores to

specific types of files. For instance, documents in financial fraud investigations or

4

https://www.cgsecurity.org/wiki/PhotoRec

multimedia files in a child abuse case. However, this technique is useless if the extension

was left intact but the file was hidden by other ways, such as by being placed into an

unusual, usually legitimate directory. This is why other methods are needed.

Machine learning

File type identification can also be achieved using machine learning based approaches.

This is what Sester et al.[2] did in 2021, by experimenting with support vector machines

(SVM) and neural networks. They reached a maximum accuracy of 91.4% using an SVM

with a linear kernel.

This approach can be enhanced by directly carrying out the training on the relevance of

the files instead of their file type. That simplifies the problem by removing one level of

indirection and allows the identification of suspicious files based on other factors. With

this technique, Serhal & Le-Khac[3] achieved a 99.8% accuracy score using random

forests, K-nearest neighbor and classification and regression trees.

Hash databases

Sometimes, suspects try to hide their files inside benign directories in an attempt to get

their data lost in the file system hierarchy under legitimate folders. The files can thus be

located inside system directories such as C:\Windows\System32 , in software data

directories such as C:\Program Files\Mozilla Firefox or in cache folders such as

C:\Users\User\AppData\Local\ subdirectories. Locating hidden files then becomes the

needle and haystack problem.

One solution is to compute the hash of all files inside these known folders and compare

them with a pre-computed hash database[4]. Such a database contains a list of file hash

that are known to be legitimate (system files, applications files, etc.). If the hash of a file is

in this database, it can then be considered benign. However, if a file is not found in the

database but is located inside a known folder, it could mean it does not belong to this

directory and has been placed here intentionally by the user. Therefore, the file can be

considered suspicious.

Fortunately, such hash databases already exist such as the National Software Reference

Library Reference Data Set or RDS for short, distributed by the US government. This

database contains a large set of file hashes belonging to known software and operating

systems, along with information on their provenance and metadata such as original file

name and size. If a file hash is present in this database, we can conclude with a high

level of confidence that this file is not suspicious.

5

https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction
https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/about-nsrl/nsrl-introduction

Some programs have already been designed to perform the database lookup for a given

set of files. The md5deep suite is a collection of programs that can be used to compute

the hash of all files within a directory and display only files for which the hash is not

present in a given hash database.

The method can also be used the other way around: comparing file hashes with a pre-

computed database of illegal content. That way, if a file matches, it can be considered

suspicious with a very high degree of certainty. However, this method will only detect

already known content such as multimedia files obtained in violation of copyright. It won’t

be able to detect new or unique content such as personal pictures or confidential

corporate documents.

The main limitation with methods based on hash databases is that they only work if files

are exactly the same. If at least one byte differs, the hashes will be different and so no

match will be found. To overcome this issue, several studies[5][6][7] experimented with

sector hashing and piecewise hashing, with the aim to partially match similar files. This

way, new content which is similar enough to already known files will be detected or

whitelisted (depending on the type of the database). Some existing tools such as ssdeep

and sdhash can achieve that to a certain extent.

Additional heuristics

In addition to the previously described methods, some heuristics can be employed while

searching the file system to further improve the detection rate and defeat other ways to

hide content, but also to filter uninteresting files. The most important heuristics are

described here.

Hidden attribute

The NTFS file system, which is the default for Windows systems, allows setting a hidden

attribute on files and folders, thus making them disappear from the Windows Explorer

with default configuration. This feature can be used by the user to conceal data[8].

However, since this technique modifies the file’s metadata in a clearly identifiable way, it’s

rather easy to list all files with the hidden attribute set. If some of them are located within

user data directories (Documents , Images , Desktop …) we can assume that the

attribute has been deliberately set by the user, and thus the file can be considered

suspicious.

6

https://md5deep.sourceforge.net
https://ssdeep-project.github.io/ssdeep/index.html
http://sdhash.org

Timestamp coherence

Most of the time, software files created during the installation are written at the same date

and thus have very near timestamps. Therefore, if a software folder contains a file with a

timestamp (created or modified) which is more recent than the rest of the directory, it

could mean it have been placed here later manually, probably with the aim to hide the file.

This can be the sign of a suspicious content.

Size filtering

According to some studies[9][10], interesting files usually have a size which is above a

specific threshold, depending on the file type. We can therefore filter all files that are

smaller than this size threshold as they are unlikely to contain relevant content.

Filtering groups of files created in a very short time

According to Neil C. Rowe[10:1], files with very near creation timestamps are likely to be

uninteresting:

TM, clustered creation times: Files with the same creation time within a short

period as that of many other files on the same drive. Such time clusters

suggest automated copying from an external source, particularly if the rate of

creation exceeded human

limits

Thus, groups of file with near creation time can be filtered. However, this rule should be

used carefully as it could exclude interesting files as well, for example if the user

extracted an archive content.

Similar metadata

A file with similar name or timestamp as another detected suspicious file can be

considered suspicious, as it could indicate a group of related files[11][12].

Interesting date and file name

Sometimes, forensic investigators know some details about the evidences they are

looking for, such as in which time range they were created, or how they are likely to be

named. Thus, the analysis of files with timestamps close to the given date[11:1] or with

suspicious keywords in their names can be prioritized.

7

Timestamp forgery

Suspects can use software to change timestamps of files they want to hide. However,

many of these software only change visible timestamps, while leaving other hidden

metadata intact. By leveraging the file system design, it’s therefore possible to detect

timestamp incoherence[13] and thus conclude to an intentional tampering. A file with

detected timestamp forgery should be considered as suspicious.

Our implementation

The analysis program has been written in C++. It incorporates an implementation of file

type identification, hash database based filtering and detection, plus some other

heuristics, including hidden file detection as well as timestamp and filename targeted

searches. All of these detection methods that can be switched on and off at runtime,

enabling the effectiveness of each technique to be studied individually or in combination.

We followed a modular architecture pattern to be easily able to add new detection rules.

File type identification

The type detection has been implemented by leveraging fidentify , as it was identified

as the most accurate tool according to a study from 2023[1:1]. To speed up the analysis,

we decided to statically link the fidentify binary into our software instead of invoking

the executable for each file. This way, we replace all the overhead of process creation by

a simple function call, which make the analysis faster and more efficient. To achieve this,

we included the testdisk source code as a git submodule inside our tree, and

modified the fidentify.c file to be callable as a library. Then we integrated the

testdisk build process into our build system (CMake).

As multiple file extensions can actually refer to the same file format, we created a simple

extension map which associates generic extensions (i.e. .zip) with a set of legitimate

extensions which could correspond to this file format (i.e. .jar , .apk). It’s currently

implemented as

std::unordered_map<std::string_view, std::unordered_set<std::string_view>> ,

allowing to perform lookups in constant time on average.

8

https://cmake.org

Hash database

Our file hashing implementation follows the NIST’s RDS schema: file are hashed

individually and looked up in a SQL database. The hash is either a MD5, SHA1 or

SHA256 of the file content. It doesn’t include file metadata such as filename, location, or

timestamps. After a quick benchmark, we decided to use SHA1 as it turned out to be the

fastest of the three.

$ openssl speed md5 sha1 sha256

[...]

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 16384 bytes

md5 33575.38k 107869.22k 269526.73k 443219.84k 530852.52k

463983.96k

sha1 46415.05k 166869.38k 604677.97k 1285292.37k 1755116.89k

1824964.61k

sha256 67907.21k 236246.27k 658070.61k 892167.02k 1121880.75k

1155674.76k

MD5 should theoretically be faster but SHA1 leverages hardware acceleration on modern

processors.

Our current implementation uses SQLite as its database system for simplicity. To speed

up hash lookups, we created an index over the sha1 column.

The analysis program computes hashes for each file in the current directory (non-

recursively), and lookup them in the database. Recognized files are whitelisted, and thus

do not undergo further analysis. If more than half of the files in the current directory are

matched in the database, the current directory is considered known. Each unknown file in

a known directory or subdirectory (recursively) is considered suspicious.

9

https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl/nsrl-download/current-rds

Heuristics

Hidden files

Our hidden file detector expects the target root directory of the analysis to be the root

mountpoint of an operating system. In other words, the analysis must be performed on a

whole drive for this detector to be useful.

Currently, hidden files are searched only on Windows, and platforms following the XDG

standard. On Windows, files with the hidden attribute placed under Desktop ,

Downloads , Documents , Music , Pictures or Videos folders are considered

suspicious. On other platforms, files located within directories specified in

~/.config/user-dirs.dirs with names starting with a dot are considered suspicious.

Usually, this concerns DESKTOP , DOWNLOADS , DOCUMENTS , MUSIC , PICTURES , VIDEOS ,

TEMPLATES and PUBLIC folders.

Since the analysis program is designed to run on POSIX systems, we use the ntfs-3g

extended attributes to detect the hidden flag on NTFS partitions. The use of another

NTFS driver thus requires it to set compatibles attributes.

Size filtering

All files under 6 bytes are skipped. Raising this threshold will speed up the analysis

process and might lower the amount of false positives, but may also miss some

suspicious files.

Keyword and timestamp search

When the investigator has some information about the sought evidences, they can

provide some additional details at runtime to the program, such as a list of suspicious file

name substrings and a target timestamp range. Files matching these criteria will be

reported as suspicious.

10

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://github.com/tuxera/ntfs-3g/wiki/Using-Extended-Attributes#ntfs-attributes

Performance optimization

In real forensic cases, time is limited. It’s crucial to deliver results as quickly as possible.

Therefore, we tried to optimize our existing software in order to achieve higher speeds.

Profiling

We started by profiling the analysis program with callgrind to identify the performance

bottlenecks of the code.

$ valgrind --tool=callgrind ./analyze ...

$ callgrind_annotate callgrind.out.96

--

Profile data file 'callgrind.out.96' (creator: callgrind-3.22.0)

--

I1 cache:

D1 cache:

LL cache:

Timerange: Basic block 0 - 7471024364

Trigger: Program termination

Profiled target: ./analyze ... (PID 96, part 1)

Events recorded: Ir

Events shown: Ir

Event sort order: Ir

Thresholds: 99

Include dirs:

User annotated:

Auto-annotation: on

--

Ir

--

126,518,478,058 (100.0%) PROGRAM TOTALS

--

Ir file:function

--

119,577,351,348 (94.51%) ???:SHA1Transform [/usr/lib/libmd.so.0.1.0]

 4,961,008,303 (3.92%) ???:0x0000000000157c80 [/usr/lib/libc.so.6]

 734,166,789 (0.58%) ???:SHA1Update [/usr/lib/libmd.so.0.1.0]

As shown above, we found that a very high percentage of the global program’s

instructions are executed within the SHA1Transform() function. This function is part of

libmd, and is called by the SHA1File() , which we directly use in the hash database

code. In other words, this means most of the time is spent computing SHA1 digests of file

11

https://valgrind.org/docs/manual/cl-manual.html
https://www.hadrons.org/software/libmd

contents with libmd. Therefore, we decided to try other libraries, with the hope to find a

faster SHA1 implementation.

SHA1 implementations benchmark

To compare the speed of different SHA1 implementations, we wrote a simple benchmark

code that computes 10,000 iterations of the SHA1 algorithm over a 1MB random buffer

with all selected implementations, while measuring overall time spent by each of them.

We selected OpenSSL, an independent C library called racrypt, and a simple

implementation leveraging x86 SHA1 native instructions (SHA-Intrinsics). We also

included libmd for reference in the benchmark. The test was run on a Debian Linux

machine with an x64 processor, with -O3 and -march=native compile options. Here are

the results we obtained:

$./run.sh

Compiling...

Starting...

Racrypt: 10797ms

Intrinsics: 9131ms

OpenSSL: 8967msms

libmd: 28791ms

We can see that libmd is the slowest of these implementations, almost 3 times slower

than the others. The fastest are OpenSSL and SHA-Intrinsics, with a ranking changing

from run to run. OpenSSL being a very popular and widely available library, we decided to

choose it.

Final benchmark

After editing our code to replace libmd function calls by their OpenSSL counterparts, we

ran benchmarks using hyperfine to measure the global speedup by comparing the

execution times of both versions.

12

https://www.openssl.org
https://github.com/sosaria7/racrypt
https://github.com/noloader/SHA-Intrinsics
https://github.com/sharkdp/hyperfine

$ hyperfine './analyze_libmd --timestamp 0 --timestamp-threshold 5 -d Testing/

rds.sqlite3 -k Testing/keywords.txt Testing/root' './analyze_openssl --timestamp 0

--timestamp-threshold 5 -d Testing/rds.sqlite3 -k Testing/keywords.txt Testing/

root'

Benchmark 1: ./analyze_libmd --timestamp 0 --timestamp-threshold 5 -d Testing/

rds.sqlite3 -k Testing/keywords.txt Testing/root

 Time (mean ± σ): 2.572 s ± 0.139 s [User: 1.303 s, System: 1.267 s]

 Range (min … max): 2.423 s … 2.824 s 10 runs

Benchmark 2: ./analyze_openssl --timestamp 0 --timestamp-threshold 5 -d Testing/

rds.sqlite3 -k Testing/keywords.txt Testing/root

 Time (mean ± σ): 791.3 ms ± 21.7 ms [User: 471.0 ms, System: 319.8 ms]

 Range (min … max): 754.3 ms … 819.0 ms 10 runs

Summary

 ./analyze_openssl --timestamp 0 --timestamp-threshold 5 -d Testing/rds.sqlite3 -

k Testing/keywords.txt Testing/root ran

 3.25 ± 0.20 times faster than ./analyze_libmd --timestamp 0 --timestamp-

threshold 5 -d Testing/rds.sqlite3 -k Testing/keywords.txt Testing/root

In conclusion, for the same arguments and the same target directory, our analysis

program is now more than 3 times faster. That’s an impressive performance gain.

Evaluation protocol

To evaluate the efficiency and accuracy of the technique implementations, we applied the

following protocol:

Create a legitimate drive by installing an operating system on an empty storage

device

Hide content from the dataset by:

Placing files and directories at random places

Altering their extensions according to the chosen probability distribution by:

Replacing the extension by a known extension

Replacing the extension by a randomly generated extension

Removing the extension

Keeping the original extension

Creating hidden files and directories in user’s folders (not implemented yet)

Execute each technique on the directory tree and measure their detection rate as

well as their false-positive rate

1.

2.

◦

◦

▪

▪

▪

▪

◦

3.

13

Dataset

To evaluate the file type identification method, we need a set of files of various formats.

For the hash database based technique, we only require that the files of the dataset are

not part of system or application data, as they could otherwise be whitelisted. The other

detection methods exclusively rely on metadata. Therefore, the semantic of the files is not

relevant. The dataset can thus be composed of arbitrary user files.

Hash database creation

Due to a very poor internet connection at home, and disk usage restrictions at the

university, we haven’t been able to download the 106GB of the entire NIST’s RDS. And

because the NIST doesn’t provide a way to download a subset of the database for

specific operating systems, we decided to make our own hash database. In order to

populate it, we wrote a simple C++ program that explores a directory tree and computes

the SHA1 hash of all regular files found inside. The tool follows the RDS database

schema, but only stores digest values and filenames to keep the database small. It also

handles the index creation. We execute this tool right after the OS installation is complete,

before adding suspicious contents on the drive.

Automation

To automate the evaluation process, we wrote a small python script that hides content

within the file system. It takes two folders as arguments: the dataset folder containing files

and directories to hide, and the root directory tree in which to hide content.

For each source files and directories, the script walk into the destination directory by

selecting subdirectories at random. At each level of the hierarchy, the current location is

chosen with a probability of 5%. If the script reaches a directory containing no

subdirectories, it resumes the walk from the root.

This process is not perfect as it tends to select directories near to the root with a higher

probability, but it’s more efficient as it avoids exploring the entire file system.

When a destination directory has been selected, the corresponding source file is copied

there and its extension may be randomly changed. With a probability of 40%, the

extension is picked among a list of known file extensions. With 20% chance, the

extension is generated randomly. With a probability of 20%, the extension is simply

removed. The remaining 20% just keep the extension unchanged.

With a 20% probability, the file is hidden. On Windows OS roots, it means setting the

hidden NTFS flag. On others platform roots, the filename is prepended with a dot.

14

In order to automatically generate an evaluation report, we added a feature to the

analysis software that allows to write the detected suspicious files in text files on disk.

There is one file per detector, containing the paths of the detected files. Once the analysis

is completed, we can use the stats.py script to generate a report from these result

files, showing the accuracy and the number of false positive of each detector, as well as

in combination.

Experiment results

We run the experiment on a freshly installed Linux Mint 21.3 Cinnamon edition inside a

Libvirt virtual machine. Just after installation was complete, we ran the database creation

tool on the guest directories /usr , /etc , /boot , /root and /home directories. The

other directories /var , /tmp and /run contain changing files. They are unlikely to be

identical on different machines. Thus, we don’t include them in the database, at the

exception of /var/lib . Same for /proc , /sys and /dev , which are virtual file

systems. /bin , /sbin , /lib , /lib32 , /libx32 , and /lib64 are just symbolic links

to /usr . /opt and /srv are empty by default.

To avoid modifying the original disk, we first mounted it as read-only. However, this

prevents us from copying new files inside. Therefore, we created a second mountpoint

using overlayfs to simulate writes. This enables us to virtually hide content inside the file

system without modifying it, while allowing us to undo the changes in order to run new

tests without interference.

Here are the results we got from a 100 files set hidden randomly using our hide.py

script:

Techniques Detection rate False-positives

File type identification 73% 1099

Hash database 35% 11

Timestamp search 100% 0

Hidden files detection 3% 0

All combined 100% 1108

Analysis

File type identification gives a huge amount a false-positives. This is mainly due to the

fact that GNU/Linux systems tend to use extensions in order to specify a file semantic

15

https://libvirt.org
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html

rather than a file format. For example, the file /var/log/Xorg.0.log.old is just a log

file. The extensions .old is used to specify that it’s an old version of the original file

/var/log/Xorg.0.log . Similarly, /usr/sbin/mkfs.ext4 is an executable file. The

.ext4 extension specifies that it operates on EXT4 file systems, unlike

/usr/sbin/mkfs.ext2 which works on EXT2, or /usr/sbin/mkfs.fat that’s used for

FAT file systems. Sometimes, no extension is used at all, as most programs in the

/usr/bin directory.

To overcome this issue, we could allow the analysis program to filter files according to

their detected types. For instance, in the case of a CSAM investigation, we could only

show files detected as image or video for which the actual extension do not correspond.

This way, all libraries, executable, configuration and text files would be filtered out while

still detecting media files with tampered extensions. By reducing the search field, this

method would significantly reduce the amount of false-positives, but on the other hand, it

would miss not requested file types.

However, on Windows systems, the accuracy of the extension tampering detection

method should be higher.

Hash database based detection return a small amount of false-positive. In our

experiments, this is due to unknown directories like /var containing copies of known

files (for example originating from /etc). In real cases however, we can expect the

number of false-positive to be higher, as the actual state of the system might differ from

the database.

The low detection rate of the method is explained by two reasons:

First, files hidden in directories which have not been included in the database populating

process won’t be detected. In our experiment, files located in /tmp or in /var/log have

not been detected as these directories were excluded from the hashing process. This is

unfortunately an expected limitation of this method.

Secondly, files hidden in directory containing no files won’t be detected either. Let’s take

the example of the /usr directory:

/usr

├── bin

├── include

├── lib

├── local

├── sbin

├── share

└── Nasty hidden file.dat

The /usr directory originally contains only subdirectories and no files. Therefore, /usr

won’t be recognized as a known directory as it contains no known files, even though

16

/usr subdirectories contain only known files. This issue is due to the way the hashing

database has been designed. In its current form, the database only stores hashes of files.

Directories are not taken into consideration at all. A flat file system with every files under

the root would produce exactly the same database as if the files were dispatched in a

complex directory hierarchy. To fix this issue, we have to compute hashes of directories

themselves, in the manner of a Merkle tree. In this example, as all subdirectories are

known, /usr would be marked as known in the database too. Thus, files hidden under

/usr would be detected.

During our experiment, we set the target timestamp range to the day the files were

hidden. Therefore, all of them have been correctly detected. This method didn’t report any

false positive as the virtual machine has not been started that day. In real cases, we can

expect to detect fewer files and have a greater rate of false positives.

The heuristic detecting hidden files only flagged 3 files. This is because only 3 files were

marked hidden and placed in common users directories.

When we mix all these methods, we can reach a very high detection rate by combining

their respective strengths. The amount of false positive may decrease in certain of our

experiments, but this is not guaranteed. In the current state of the software, when a

detector incorrectly reports a file as suspicious, the error can only be rectified if its hash

is present in the hash database, or if it’s a too small file. In other words, any false

positives larger than the size threshold located in directories non targeted by the hash

database won’t be avoided by combining the existing detection methods.

Areas for improvement

As explained earlier, redesigning the hash database to store Merkle trees of directories

would probably improve the overall accuracy and detection rate of the tool, but would

break compatibility with the NIST’s RDS. Therefore, we should create a new database

format for the Merkle trees based method, while keeping the program compatible with the

standard RDS schema.

Additionally, the software integrability could be improved. Even though we added the

ability to return the results in a structured form, we’d like to add support for a more

standard and robust format such as JSON or TOML, or even allow the results to be stored

in a database. That way, the findings of the analysis would be even easier to be

processed by other tools, and would help integration with larger frameworks.

The last improvement axis is about performance. Since the time in which forensic

investigator must give results is limited, it’s essential to make the analysis as fast as

possible. First, we could speed up I/O by leveraging memory mapped files instead of

standard streams for large contents. This should reduce the time spent to read file

17

content by avoiding system calls overhead and useless copies. Then, the main

exploration and analysis process could be parallelized. A thread pool could be

implemented, to which the analysis tasks of each subdirectory would be dispatched. This

has the potential to multiply the analysis speed by the number of processor core, which

will be a significant performance improvement. Obviously, the individual analysis

components can be enhanced too. For instance, the keyword matching part could be

speeded up by leveraging the Aho–Corasick algorithm, thus reducing the search

complexity, and the DBMS used for hash lookups could be replaced by a high-

performance one such as ClickHouse or DuckDB. The hashing algorithm used to match

files could also be changed to a faster, possibly non-cryptographic one such as wyhash

or XXH3. However, this would imply to recompute the hash database and would also

break compatibility with the NIST’s RDS.

Conclusion

This paper outlines the progress and findings of our forensic project. With the goal to

detect suspicious files hidden in a directory hierarchy, we have successfully implemented

several methods to address this objective: extension tampering detection by file type

identification, a hash database based approach following the NIST’s RDS pattern,

suspicious hidden files detection, size based filtering, and a time and filename targeted

search. Extension tampering detection achieves a greater detection rate but is less

accurate with a very high number of false positives. On the other hand, the hash

database technique and hidden files detection discover fewer files but are much more

precise. Additionally, timestamp and filename search can turn out to be very powerful

tools if some information about the case are known. By combining all of these methods,

plus a size-based filter, we were able to achieve very high overall detection rates while

keeping the ability to maintain a low number of false positives in certain cases. Moreover,

we have other leads to improve the accuracy and detection rate of our tool.

If we had to continue this project, we would have tried to enhance the existing detection

methods, and to optimize the software’s performance, enabling faster and more efficient

detection of concealed files.

Overall, the results obtained so far demonstrate promising progress in our pursuit of

developing an investigation tool for detecting suspicious contents within storage devices.

We hope that our solution is of sufficiently good quality and is accurate enough to be

actually helpful in real-life use cases.

18

https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm

Tasks distribution

This report has been fully written by Matéo. He also performed the code profiling and

benchmarks, as well as the experiments, and designed the slides for the two

presentations.

Due to Sylia's lack of work (despite initial equal planning of task distribution), all of the

code currently used by the program has been completely designed and written by Matéo,

including the hashing program, the various python scripts, and the build system

configuration. The documentation has also been written by Matéo.

Sylia has written some proof-of-concept C code for heuristics-based detection under the

src/heuristique directory of the source tree, which cannot be used as-is.

Even though Matéo designed an interface for detectors written in C

(src/analyser/ExternFileBasedDetector.cpp) to allow Sylia to integrate her code to

the project (because she has little experience with C++), explained her how to use it, and

provided an example of such integration (src/analyser/externs/size_filter.h), Sylia

did not add her code to the analysis program. Therefore, Matéo reimplemented it in C++

in the main program.

Bibliography

Adrien Dubettier, Tanguy Gernot, Emmanuel Giguet, Christophe Rosenberger, File

type identification tools for digital investigations, Forensic Science International:

Digital Investigation, Volume 46 (2023) 2666-2817

DOI: https://doi.org/10.1016/j.fsidi.2023.301574

Joachim Sester, Darren Hayes, Mark Scanlon, Nhien-An Le-Khac, A comparative

study of support vector machine and neural networks for file type identification

using n-gram analysis (2021)

DOI: https://doi.org/10.1016/j.fsidi.2021.301121

Cezar Serhal and Nhien-An Le-Khac, Machine learning based approach to analyze

file meta data for smart phone file triage (2021)

DOI: https://doi.org/10.1016/j.fsidi.2021.301194

Xiaodong Lin, File Signature Searching Forensics, Introductory Computer Forensics

(2018)

DOI: https://doi.org/10.1007/978-3-030-00581-8_10

1.

2.

3.

4.

19

https://doi.org/10.1016/j.fsidi.2023.301574
https://doi.org/10.1016/j.fsidi.2021.301121
https://doi.org/10.1016/j.fsidi.2021.301194
https://doi.org/10.1007/978-3-030-00581-8_10

Myeong Lim and James Jones, A Digital Media Similarity Measure for Triage of

Digital Forensic Evidence, Advances in Digital Forensic (2020)

DOI: https://doi.org/10.1007/978-3-030-56223-6_7

Vitor Hugo Galhardo Moia and Marco Aurélio A. Henriques, A comparative analysis

about similarity search strategies for digital forensics investigations, Proceedings of

the Thirty-Fifth Brazilian Symposium on Telecommunications and Signal Processing

(2017)

DOI: http://dx.doi.org/10.14209/sbrt.2017.115

URL: https://www.sbrt.org.br/sbrt2017/anais/1570361754.pdf

Jonathan Oliver, Chun Cheng and Yanggui Chen Trend Micro, TLSH - A Locality

Sensitive Hash (2013)

DOI: https://doi.org/10.1109/CTC.2013.9

Jeremy Davis, Joe MacLean, David Dampier, Methods of Information Hiding and

Detection in File Systems, Department of Computer Science and Engineering,

Mississippi State University (2010)

DOI: https://doi.org/10.1109/SADFE.2010.17

Goldberg, Raymond M., Testing the forensic interestingness of image files based on

size and type (2017)

URL: https://upload.wikimedia.org/wikipedia/commons/0/0a/

Testing_the_forensic_interestingness_of_image_files_based_on_size_and_type_(I

A_testingforensici1094556129).pdf

Rowe, N.C., Identifying Forensically Uninteresting Files Using a Large Corpus

(2014)

DOI: https://doi.org/10.1007/978-3-319-14289-0_7

Anuradha Gupta, Privacy Preserving Efficient Digital Forensic Investigation

Framework (2013)

DOI: https://doi.org/10.1109/IC3.2013.6612225

Xiaoyu Du, Alleviating the Digital Forensic Backlog: A Methodology for Automated

Digital Evidence Processing (2020)

URL: https://www.markscanlon.co/papers/PhDThesis-

MethodologyAutomatedDigitalEvidenceProcessing.pdf

Gyu-Sang Cho, A computer forensic method for detecting timestamp forgery in

NTFS (2013)

DOI: https://doi.org/10.1016/j.cose.2012.11.003

5.

6.

7.

8.

9.

10.

11.

12.

13.

20

https://doi.org/10.1007/978-3-030-56223-6_7
http://dx.doi.org/10.14209/sbrt.2017.115
https://www.sbrt.org.br/sbrt2017/anais/1570361754.pdf
https://doi.org/10.1109/CTC.2013.9
https://doi.org/10.1109/SADFE.2010.17
https://upload.wikimedia.org/wikipedia/commons/0/0a/Testing_the_forensic_interestingness_of_image_files_based_on_size_and_type_%28IA_testingforensici1094556129%29.pdf
https://upload.wikimedia.org/wikipedia/commons/0/0a/Testing_the_forensic_interestingness_of_image_files_based_on_size_and_type_%28IA_testingforensici1094556129%29.pdf
https://upload.wikimedia.org/wikipedia/commons/0/0a/Testing_the_forensic_interestingness_of_image_files_based_on_size_and_type_%28IA_testingforensici1094556129%29.pdf
https://doi.org/10.1007/978-3-319-14289-0_7
https://doi.org/10.1109/IC3.2013.6612225
https://www.markscanlon.co/papers/PhDThesis-MethodologyAutomatedDigitalEvidenceProcessing.pdf
https://www.markscanlon.co/papers/PhDThesis-MethodologyAutomatedDigitalEvidenceProcessing.pdf
https://doi.org/10.1016/j.cose.2012.11.003

	Suspicious contents
	M1 project report

	Introduction
	Table of contents
	State of the art
	File signature
	Machine learning
	Hash databases
	Additional heuristics
	Hidden attribute
	Timestamp coherence
	Size filtering
	Filtering groups of files created in a very short time
	Similar metadata
	Interesting date and file name
	Timestamp forgery

	Our implementation
	File type identification
	Hash database
	Heuristics
	Hidden files
	Size filtering
	Keyword and timestamp search

	Performance optimization
	Profiling
	SHA1 implementations benchmark
	Final benchmark

	Evaluation protocol
	Dataset
	Hash database creation
	Automation

	Experiment results
	Analysis

	Areas for improvement
	Conclusion
	Tasks distribution
	Bibliography

