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Avant-propos 
 

Ce rapport s’inscrit dans le cadre du projet de troisième semestre de Master de 
Cybersécurité, réalisé courant novembre et décembre 2025.  

 
Il a été encadré par Christophe Charrier, responsable de l’équipe SAFE (Sécurité, 

Architecture, Forensique, biomEtrie) au GREYC (Groupe de recherche en informatique, 
image et instrumentation de Caen), et Emmanuel Giguet, chargé de recherches au 
CNRS affecté au GREYC.  

Avant toute chose, nous tenons à les remercier pour leur accompagnement et 
leurs précieux conseils tout au long de ce travail. 

 
 

2 



Cindy Hartmann - Antoine Montier | Attaques Adversariales | 2025 

Introduction 
 

Avec l’essor de l’Intelligence Artificielle et sa démocratisation auprès du grand 
public ces dernières années, il est à la portée de tous de générer et de manipuler des 
contenus multimédias. Ces technologies atteignent aujourd’hui un niveau suffisant 
pour produire aisément des images, sons ou des vidéos d’un réalisme capable de 
tromper les sens humains. 

C’est dans ce cadre que les deepfakes s’inscrivent. Pour reprendre la définition 
donnée par la loi européenne sur l'intelligence artificielle (article 3 point 60 du 
Règlement (UE) 2024/1689, dit “AI Act”), un deepfake désigne une image, un contenu 
audio ou vidéo généré ou manipulé par IA, présentant une forte ressemblance avec 
des personnes, des objets, des lieux, des entités ou encore des événements réels, et 
qui pourrait apparaître faussement authentique ou vrai pour une personne. 
 

Les deepfakes sont aujourd’hui utilisés dans des contextes légitimes tels que le 
cadre du divertissement ou de la reconstitution historique. Cependant, ils peuvent 
également être utilisés à des fins malveillantes, comme la diffusion de contenus 
trompeurs, la désinformation ou encore l’usurpation d’identité.  

En 2024, un deepfake du directeur financier d’une entreprise a été généré à 
partir d'extraits de conférences disponibles publiquement sur Youtube. Ce deepfake a 
ensuite été immiscé dans une visioconférence, demandant d’effectuer un transfert 
d’argent vers un compte. Le préjudice a été d’environ 24 millions d’euros.  

Cet exemple, ciblant la multinationale Arup, basée à  Hong-Kong n’est pas un 
cas isolé. D’après le rapport sur la fraude d’identité publié par SumSub en 20241, on 
parle d’une augmentation à l’échelle mondiale, de 400% du nombre de deepfakes 
détectés entre 2023 et 2024. Les deepfakes sont utilisés dans 7% des tentatives de 
fraude, ciblant autant les particuliers que les entreprises. 

L’emploi mal intentionné de cette technologie inquiète. En effet, lors d’un 
sondage publié par le même organisme en 2024, 81% des questionnés affirmaient 
être soucieux de l’impact des deepfakes sur l’intégrité électorale. 
 

Face à ces risques émergents, la mise en place de systèmes capables de 
détecter les deepfakes est devenu un enjeu majeur. Ces systèmes visent à confirmer 

1 Sumsub. (2024). Identity fraud report 2024. Disponible sur Scribd : 
https://www.scribd.com/document/909970242/Sumsub-Identity-Fraud-Report-2024 
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l’authenticité des contenus, en identifiant les traces laissées par les processus de 
génération et manipulation artificielle. Ils jouent un rôle important vis-à-vis de la 
protection de l’information et de la réputation des individus, ainsi que dans la 
confiance accordée aux médias numériques. 
 

L’intelligence artificielle s’est imposée comme approche privilégiée pour la 
conception de systèmes de détection de deepfake. Néanmoins, ceux-ci ne sont pas 
infaillibles et il existe diverses manières de les contourner.  

Il est par exemple possible d’ajouter des perturbations minimes pour tromper le 
détecteur sans dégrader le contenu de manière visible. C’est le principe des attaques 
adversariales. 

 
Notre projet s’inscrit dans ce contexte, et se concentre justement sur l’étude 

des attaques adversariales appliquées aux systèmes de détection de face swapping, 
une technique de deepfake consistant à apposer le visage d’une personne sur une 
autre. 

 
Nos objectifs étaient les suivants :  

●​ Comprendre le fonctionnement des attaques adversariales; 
●​ Appliquer ces attaques à un modèle de détection de deepfakes / face swapping 

existant ; 
●​ Mesurer la dégradation des performances du détecteur. 

 
Pour les atteindre, nous avons dans un premier temps effectué un état de l’art 

des attaques adversariales. Puis, nous avons choisi un modèle et un jeu de données de 
référence. Enfin, nous avons appliqué certaines de ces attaques sur notre modèle et 
constaté la dégradation de ses performances. 

 
Nous détaillerons chacune de ces étapes dans le présent rapport.  
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I• État de l’art des attaques adversariales 
 

La première phase de notre projet a été consacrée à la rédaction d’un état de 
l’art concernant les attaques adversariales. Nous avons commencé par nous 
documenter sur les pratiques et techniques de ce domaine.  

Au total, nous avons étudié cinq types d’attaques dans notre état de l’art : la 
Fast Gradient Signed Method (FGSM), la Projected Gradient Descent (PGD), DeepFool et 
les Universal Adversarial Perturbations (UAP) ainsi qu’une dernière, non présentée ici. 
Ces attaques fonctionnent sur des modèles dits en “white-box” : nous pouvons 
accéder aux paramètres du modèle ainsi qu’aux gradients, c’est-à-dire à la direction au 
sens mathématique dans laquelle changer les pixels de l’image pour minimiser ou 
maximiser l’erreur de prédiction.  
 

L’attaque la plus simple à comprendre, FGSM fut notre premier pas dans ce 
domaine. Nous l’avons testé avec le but de comprendre et d’implémenter une attaque 
typique. Il est facile de trouver des informations concernant FGSM. C’est pour cette 
raison que nous l’avons privilégié. La seconde attaque, PGD, est une version plus 
poussée de FGSM. Cela nous a familiarisé avec la manière d’implémenter et de 
modifier le comportement de ces techniques. La troisième attaque que nous avons 
étudiée est DeepFool. C’est une attaque plus complexe à implémenter. Elle est connue 
pour son efficacité dans le domaine des deepfakes. Finalement, nous avons étudié les 
familles d’attaques UAP. Ces techniques se démarquent en calculant une unique 
perturbation universelle qui pourra ensuite être appliquée aux données souhaitées. 
L’étude des UAP nous a permis de renforcer encore nos connaissances en intégrant des 
attaques déjà développées afin de calculer cette perturbation.  
 
​ Pour chaque attaque, nous avons d’abord étudié leur principe et leur algorithme 
en nous appuyant sur des publications scientifiques et des dépôts Github. Ensuite, 
nous les avons implémentés nous-mêmes, ce qui nous a permis de mieux saisir leurs 
différents résultats. 

Pour cela, nous avons travaillé sur un environnement collaboratif en ligne : 
Deepnote. Nous avons utilisé la librairie Tensorflow de python avec les images du 
MNIST, des chiffres dessinés à la main. Nous avons créé un modèle de classification 
simple mais performant sur ces images : son accuracy, c’est-à-dire la proportion 
d’images correctement prédites, est supérieure à 97%. L’ensemble constitué du 
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modèle et du jeu d’images a été notre base pour implémenter et tester ces attaques. 
La figure ci-dessous montre les prédictions du classifieur sur ces images. Le titre de 
chaque chiffre présente d’abord le chiffre vrai (‘True’) puis la prédiction du modèle 
(‘Pred’) ainsi que sa probabilité. 

 

 
Ce que vous allez lire est une version synthétisée de l’état de l’art, nécessaire 

pour la compréhension globale de ce rapport. La version complète de l’état de l’art, les 
implémentations ainsi que les documents consultés sont disponibles en annexe. 

 

a/ FGSM 
 

Principe 
 
L’attaque Fast Gradient Sign Method (FGSM) consiste à générer une image 

adversariale en ajoutant un bruit calculé à l’aide de la dérivée du coût du réseau. C’est 
une fonction mathématique mesurant à quel point la prédiction est mauvaise par 
rapport à la réponse attendue. L’idée est de “pousser” les pixels de l’image dans la 

direction qui augmente le coût si on souhaite tromper au 
maximum le modèle. L’attaque est dite “non ciblée” (figure 
de gauche, l’image est prédite comme étant un 9 avec une 
probabilité de 99.8%). On peut également procéder de 
manière à leurrer le modèle dans un sens particulier 
(figure de droite, faire prédire une image de 4 comme 
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étant un 7. L’image est prédite comme étant un 7 avec une probabilité de 63%). Dans 
ce cas-là, l’attaque est dite “ciblée”, on cherche alors à diminuer le coût de la classe 
cible. 

 
Implémentation 

 
​ Cette attaque est assez simple à implémenter. En effet, on calcule la dérivée du 
coût par rapport à l’image en entrée. On crée alors la perturbation qui va dans ce sens. 
On multiplie ensuite cette perturbation par un facteur d’intensité en fonction du 
résultat souhaité. Finalement, on ajoute la perturbation à l’image pour obtenir 
l’exemple adversarial. 

Le seul paramètre de cette technique est le facteur d’intensité de la 
perturbation, noté є. Sa valeur, entre 0 et 1 permet de jouer avec l’efficacité et la 
visibilité de l’attaque. Réglé proche de 0, l’attaque sera peu visible, mais sans efficacité 
garantie. D’un autre côté, pour des valeurs avoisinant 1, l’attaque sera très visible mais 
très efficace. Ce réglage est une manière de comprendre le dilemme 
discrétion/efficacité des attaques. La figure ci-contre présente le taux de précision 
(proportion d’images perturbées ayant trompé le modèle) des deux versions de 
l’attaque pour des valeurs de є comprises entre 0 et 0.3. Ce graphique a été réalisé à 
partir de 96 images. On remarque que la version non ciblée (bleu) sature pour un є 
supérieur à 0.17. 

 
​ L’attaque FGSM est efficace, mais reste tout de même limitée. En effet, la qualité 
de l’exemple généré pour la même quantité de bruit est généralement inférieure à celle 
des attaques récentes. Nous pouvons d’ailleurs le voir sur le graphique plus haut, la 
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précision de la version ciblée dépasse à peine les 70% pour un є réglé à 0.3. Cela est 
en partie explicable par le fait que la perturbation soit calculée en une seule fois. 

Nous allons à présent voir en quoi l’attaque PGD est pertinente et quelles 
réponses elle va proposer aux limites de FGSM. 

 

b/ PGD 
 

Principe 
 
​ L’attaque Projected Gradient Descent (PGD) peut être vue comme une version 
itérative de la précédente attaque. L’idée générale est de répéter plusieurs fois FGSM 

avec une intensité très faible, en recalculant à chaque 
itération la direction de la perturbation à effectuer. Cette 
technique dispose également de deux versions. La figure 
de gauche montre le résultat de la version non ciblée de 
l’attaque, ici le modèle prédit un 9 avec 99.5% de 
probabilité. La figure de droite a été obtenue après une 

attaque PGD, ayant pour cible 7. La prédiction obtenue est un 7 avec une probabilité de 
100%.  
 

Implémentation 
 
​ À partir de FGSM, l’implémentation de cette attaque ne nécessite que peu 
d’étapes. D’abord, nous appliquons un bruit aléatoire avant tout calcul. Cela dans le 
but d’éviter des minimums locaux du coût du réseau. Ensuite, nous appliquons k fois 
l’algorithme FGSM avec un facteur d’intensité α. À chaque itération, l’image est mise à 
jour avec la nouvelle perturbation. Ainsi, l’exemple adversarial final se construit peu à 
peu. Finalement, on vérifie que la modification totale ne dépasse pas un facteur є. 
​ On remarque alors qu’il y a plus de paramètres à manipuler. De manière 
générale, on choisi un nombre d’itérations k compris entre 20 et 100, un facteur de 
perturbation totale є inférieur à 0.3 et une intensité de modification α 
approximativement égale à k/є. À titre d’exemple, les images présentées ci-dessus ont 
été générées avec ces paramètres : (є = 0.2, k = 40, α = 0.01).  

Le graphique présent ci-dessous détaille, pour chaque chiffre cible, la précision 
de l’attaque en fonction du paramètre є pour 60 images. On remarque alors que la 
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précision globale est nettement supérieure à celle obtenue avec FGSM en version 
ciblée. On remarque également qu’il est plus compliqué de tromper le modèle dans le 
sens de certains chiffres (notamment le 1 dans ce cas). Cela montre que chaque 
donnée n’est pas égale face à ce type d’attaque. 

 
​ Cette technique propose donc de meilleurs résultats au prix de calculs plus 
complexes. Cependant, PGD reste limitée. Par exemple, trouver le bon réglage des 
paramètres peut nécessiter plusieurs exécutions. Aussi, le problème des minimums 
locaux évoqué dans la partie précédente est atténué par l’approche itérative, mais 
existe toujours. Une variante de PGD nommée MIM cherche à répondre à cela en 
ajoutant une notion d’inertie, se concentrant alors davantage sur le minimum global. 
 
 
 
 
 
 
 
 
 

c/ 

DeepFool 
 

Principe 
​  
​ À la différence des autres attaques, DeepFool ne cherche pas à maximiser une 
valeur de coût ou à modifier les pixels selon la direction du gradient. L’idée de cette 
attaque est de modifier l’image de manière à ce que la prédiction franchisse une des 
frontières de décision du modèle. C’est-à-dire que la classification de l’image traverse 
une des limites internes du modèle, entraînant ainsi une erreur de prédiction.  

Cette approche est particulière, car elle va calculer le bruit minimal permettant 
de changer la classe prédite de l’image. L’attaque fonctionne alors, par défaut, en 
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version non ciblée. Toutefois, il existe une variante de DeepFool, cherchant à franchir 
cette fois, non pas n’importe quelle frontière, mais plutôt la frontière avec une classe 
cible. Ainsi, nous sommes capables de faire fonctionner l’attaque de manière ciblée ou 
non ciblée.  

L’image de gauche est obtenue par la version non ciblée de l’attaque. Le modèle 
prédit un 7 avec une probabilité de 49%. Quant à l’image de droite, elle cible le 

chiffre 4. Le modèle classe cette image comme étant un 4 
avec une probabilité de 23%. Ces probabilités sont 
nettement inférieures à celles obtenues avec les 
précédentes attaques. Cela vient du fait que le calcul 
s’arrête dès que le modèle classifie le chiffre comme 
appartenant à une autre classe. 

 
 
Implémentation 

​  
Cette attaque est plus complexe à implémenter que les dernières. En effet, elle 

nécessite l’accès aux frontières de décision du classifieur. La première étape de 
l’attaque consiste alors à linéariser le modèle, de manière à mettre en évidence ces 
frontières. Ensuite, tant que la classe prédite reste inchangée, on applique la 
perturbation minimale sur l’image, de façon à suivre le chemin le plus court vers la 
frontière la plus proche. Quand la classe prédite change, on continue légèrement dans 
cette direction afin de bien dépasser la frontière. C’est le paramètre overshoot qui 
définit l’intensité de ce dernier déplacement. Par exemple, les images ci-dessus ont 
été générées avec un overshoot réglé à 0.02. Il est également possible de fixer le 
nombre d’itérations maximal. Lors de nos tests sur 50 images, la précision de l’attaque 
atteint 100% au bout de 29 itérations. Le graphique présentant la précision d’attaque 
en fonction du nombre d’itérations est disponible en annexe. 

 
Les résultats de cette technique peuvent paraître impressionnants, cependant, 

comme toute attaque adversariale, DeepFool présente des faiblesses.  
En effet, l’attaque est moins efficace dans le cas des classifications non binaires, 

ou avec beaucoup de classes (Comme ici, nous avons 10 classes). C’est d’ailleurs pour 
cette raison qu’il nous a fallu presque 30 itérations avant d’atteindre une précision 
d’attaque égale à 100%.  
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Une deuxième limitation découle directement de la relation entre l’algorithme et 
le modèle. L’image adversariale obtenue fonctionne très bien pour le modèle. 
Cependant, si l’architecture du modèle change légèrement ou si l’on souhaite 
transférer l’image vers un modèle de type black-box, les images générées deviennent 
rapidement obsolètes. 
 

d/ UAP 
 

Principe 
 

Les Universal Adversarial Perturbations (UAP) sont, comme leur nom l’indique, 
des perturbations universelles. Contrairement aux attaques vues précédemment, une 
UAP est générée à partir d’un jeu d’images, et peut tromper le modèle sur un grand 
nombre d’images de ce jeu. Le bruit n’a pas besoin d’être recalculé pour chaque image. 
On se contente simplement de réaliser une addition pixel par pixel, appliquant alors le 
bruit comme un masque sur l’image. En procédant ainsi, les UAP réalisent une attaque 
non ciblée. 
 

Pour générer une UAP, il faut itérer plusieurs fois sur le jeu de données. À 
chaque passage, on identifie les images qui ne trompent pas encore le modèle et on 
cherche une perturbation qui les amène à changer de classe. Ces modifications locales 
nous permettent de mettre à jour le vecteur de perturbation global.  

Nous réitérons sur le jeu de données jusqu’à ce que ce vecteur de perturbation 
arrive à tromper le modèle sur un certain pourcentage du jeu de données, appelé 
fooling rate. 
 

Pour calculer les perturbations locales, UAP repose sur un algorithme d’attaque 
adversariale. Il est courant d’utiliser DeepFool, mais nous pouvons le remplacer par 
d’autres attaques. Dans notre cas, nous avons essayé dans un premier temps avec 
DeepFool, puis avec PGD. Ces différentes approches permettent de tirer parti des 
avantages et inconvénients liés à chaque attaque. Nous verrons dans la partie III en 
quoi l’algorithme utilisé pour générer l’UAP amène à des résultats différents. 
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Implémentation 
 
➔​ DeepFool  

 
Les figures ci-contre montrent, à gauche, une 

perturbation universelle générée par UAP-DeepFool sur 
200 images du jeu de données MNIST. Elle a été obtenue 
en une seule itération et a un fooling rate de 87.5%. À 
droite, un exemple d’application sur une image du jeu de 
données. L’image est prédite comme étant un 0 avec une probabilité de 92% 

  
 
➔​ PGD 

 
​ Pareillement, les figures ci-contre montrent, à 
gauche, à quoi ressemble une UAP générée avec PGD, et à 
droite, un exemple d’application sur une des images du 
MNIST. Comme les temps de calculs étaient 
sensiblement plus longs qu’avec DeepFool, nous avons dû 
baisser le nombre d’images dans le jeu de données à 100, ainsi que le fooling rate 
ciblé. Cela nous a permis d’obtenir un fooling rate de 62% en 2 itérations. L’image de 
droite est prédite comme étant un 8 avec une probabilité de 65% 
 

Ce que l’on constate immédiatement avec les UAP, c’est qu’elles sont beaucoup 
moins discrètes que les attaques présentées précédemment. Cela découle 
directement du fait que l’on génère un leurre capable de tromper le modèle quand il 
est appliqué sur différentes images. Le coût de l’efficacité de l’UAP se ressent alors 
dans l’intensité du bruit présent. Notons qu’il est possible de régler la magnitude de 
l’UAP. C’est-à-dire qu’il est possible de limiter l’intensité des perturbations, de la 
même manière qu’avec le paramètre є des attaques FGSM et PGD. 

Un autre aspect à prendre en compte lorsque l’on travaille avec des UAP est le 
temps de génération de la perturbation. Comme nous itérons plusieurs fois sur le jeu 
de données complet, plus celui-ci est grand, plus les calculs sont complexes et longs. 
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Conclusion 
 
​ L’état de l’art intégral ainsi que l’implémentation des attaques et les ressources 
consultées sont disponibles en annexe.  

Cette première étape nous a permis de comprendre le fonctionnement et 
l'ampleur de ces techniques. Lors de la rédaction de l’état de l’art, nous avons étudié 
cinq familles d’attaques et nous en avons retenu trois. Chacune de ces attaques a été 
implémentée puis testée afin de comprendre en détail son fonctionnement ainsi que 
l’influence des paramètres. 

Dans la version complète de l’état de l’art, nous avons étudié la Jacobian-based 
Saliency Map Attack (JSMA), basée sur une carte de saillance. Nous n’avons pas utilisé 
cette attaque par la suite en raison des importants temps de calcul. C’est pour cette 
raison que nous avons choisi de ne pas la mentionner dans le rapport ci-présent. 

Nous en avons profité de cette phase pour vérifier que les attaques testées 
étaient fonctionnelles et confirmer leur utilité pour la suite de ce projet : attaquer un 
système de détection de deepfake. 
 

Tableau récapitulatif 
 

Attaque Original FGSM PGD DeepFool UAP-DF UAP-PGD 

Temps (s) - 10-3 10-1 10-1 103 103 

Classe 
prédite 

9 
(95%) 

7 
(99.8%) 

7 
(99.9%) 

7 
(46%) 

0 
(99.5%) 

8 
(99.4%) 

Image 
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II • Systèmes de détection de deepfakes 
 

À présent que nous comprenons le fonctionnement et l’intérêt de ces attaques 
appliqués à un jeu de données simple avec un modèle peu complexe, nous allons nous 
pencher sur l’aspect pratique de notre travail : implémenter ces attaques sur des 
images de visages dans le but de tromper un modèle. 
 

a/ Choix du modèle et du jeu de données 
 
Nous cherchons d’abord à obtenir un modèle de classification ainsi qu’un jeu de 

données. En réalité, l’approche est la même que dans la première partie. 
 

1/ Modèle 
 
​ La question du choix du modèle a soulevé trois pistes principales. 
​  
​ Premièrement, nous nous sommes penchés sur le modèle ResNet-502. Sorti en 
2015, l’utilité première de ce modèle est la classification d’images au sens large. Il a 
donc fallu l’affiner avec de nouvelles données afin qu’il se comporte comme un 
classifieur binaire (image vraie ou image fausse). Cette première option s’est révélée 
intéressante, car nous avions le contrôle sur le jeu de données d'entraînement ainsi 
que sur les hyper-paramètres du système. Toutefois, nous avons été contraints 
d’abandonner cette piste, car la puissance et le temps de calcul requis n’étaient pas 
réalistes. 
 
​ Dans un second temps, nous avons cherché un modèle déjà entraîné à classifier 
de manière binaire une image de visage. Nous avons choisi d’utiliser le classifieur de 
selimsef3, vainqueur du DeepFake Detection Challenge (2019). Cependant, nous avons 
été rapidement contraints d’abandonner cette piste. En effet, il était simple de réaliser 
une prédiction avec ce modèle. Toutefois, la plupart des attaques nécessitant un accès 
aux poids du modèle, nous devions nous munir du fichier des poids ainsi que d’assez 

3 Selimsef. (2020). Selimsef/dfdc_deepfake_challenge: A prize winning solution for DFDC Challenge. 
GitHub. https://github.com/selimsef/dfdc_deepfake_challenge 

2 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv. 
https://arxiv.org/abs/1512.03385 
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de puissance de calcul afin d’obtenir la meilleure perturbation. Or, le modèle ayant été 
créé 6 ans auparavant, les liens vers les poids de ce dernier étaient obsolètes. Nous 
avons donc eu des difficultés à obtenir les paramètres du classifieur. De plus, le poids 
du modèle s’est révélé être trop important par rapport à la puissance dont nous 
disposions. 
​  
​ Finalement, après ces deux abandons, nous avons utilisé le classifieur de i3p94, 
une version affinée de Xception5, un modèle entraîné avec la librairie torch. Ce modèle 
présente les avantages d’être facilement accessible et léger. Nous avions donc la 
possibilité de faire des prédictions ainsi que d’accéder aux gradients du modèle. 
 
​ Comme précisé dans la première partie, nous travaillons avec le module 
Tensorflow. Par souci de compatibilité, nous avons donc converti le modèle en un 
format utilisable avec Tensorflow à l’aide d’outils tels que nobuco. 
 

2/ Choix du dataset 
 

En 2019, les chercheurs de l’université de Munich publient le jeu de données 
FaceForensics++6. Il est construit à partir de mille vidéos issues de Youtube sur 
lesquelles une transformation a été appliquée. Nous avons donc téléchargé puis extrait 
vers des images la moitiée de ces vidéos, portant la taille de notre jeu de données 
au-delà de 2 Téraoctets.  

 
Une fois le jeu de données téléchargé, nous avons cherché à vérifier que les 

prédictions du modèle sur ce dernier étaient cohérentes. 
 

b/ Évaluation du modèle 
​  
​ Cette étape d’évaluation est cruciale. En effet, on ne veut pas construire une 
attaque sur le modèle en utilisant une image qu’il n’est pas capable de reconnaître. 

6 Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2019). FaceForensics++: 
Learning to detect manipulated facial images. arXiv. https://arxiv.org/abs/1901.08971 

5 Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. arXiv. 
https://arxiv.org/abs/1610.02357 

4 I3p9. (2021). GitHub - i3p9/deepfake-detection-with-xception : Deepfake detection. GitHub. 
https://github.com/i3p9/deepfake-detection-with-xception 
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Nous avons donc vérifié que les prédictions du modèle correspondent bien aux 
étiquettes des images. 
 

1/ Premiers résultats 
​  
​ Il a d’abord été nécessaire d’extraire les visages des images. Pour cela, nous 
avons utilisé l’outil de freearhey7 qui découpe les visages présents dans une image, 
créant ainsi autant de sous-images que de visages. Nous avons extrait 4356 images de 
visage. Comme nous pouvons le voir sur la figure ci-dessous, les résultats obtenus sont 
mauvais. En effet, les distributions des prédictions des images vraies et fausses sont 
presque superposées. La précision (proportion des cas réellement faux parmi tous les 
cas classés faux) du modèle et le recall (proportion des cas faux classés faux) sont 
alors restés aux alentours de 0.50.  

Nous avons donc cherché à afficher les données les moins bien prédites : des visages 
difficilement perceptibles, avec un objet bloquant une partie du visage. Parfois même, 
des formes étaient interprétées comme étant un visage (des exemples de photo ainsi 
que les métriques de cette étape sont disponibles en annexe). Nous avons donc 
cherché à corriger cela. 
 

2/ Amélioration du dataset 
​  
​ Nous avons alors deux possibilités qui s’offrent à nous pour résoudre ce 
problème. La première est d’affiner le modèle. La seconde est d’adapter le jeu de 
données. Nous sommes partis sur la deuxième solution pour des raisons de puissance 
de calcul et de faisabilité. 

7 Freearhey. (s. d.). GitHub - freearhey/face-extractor : Python script that detects faces on the image or 
video, extracts them and saves to the specified folder. GitHub. 
https://github.com/freearhey/face-extractor 
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​  
​ Nous avons alors utilisé l’outil de dullage8, visant à aligner les yeux avec 
l’horizon ainsi qu’à centrer le visage dans l’image. Ainsi, les photos avec au moins un 
œil caché étaient filtrées. Le fait que les visages soient centrés et à la même échelle a 
joué un rôle important dans l’amélioration des résultats. Ensuite, nous avons remarqué 
que certaines images étaient zoomées ou pixelisées. Pour corriger cela, nous avons 
fixé un seuil de qualité d’image minimale afin de filtrer de manière plus fine. 
 

3/ Résultats après traitement des images en entrée​   
 
​ Cette étape d’écrémage du jeu de données s’est révélée cruciale. 

Comme nous le remarquons sur la figure ci-dessus, les résultats d’évaluation du 
classifieur sur le jeu de données filtré sont conformes à nos attentes. En effet, on 
observe un clair divorce entre les deux distributions de prédictions. La précision 
atteinte est de 0.96 pour la classe vraie (en vert) et 0.73 pour la classe fausse (en 
rouge). Ce qui est intéressant, c’est le recall de la classe fausse. Il est égal à 0.97. Cela 
signifie que seulement 3% des images de deepfakes seront qualifiées comme étant 
vraies. Ce score de recall est bien supérieur à celui de la classe vraie (0.64). Nous 
avons obtenu ces métriques en fixant un seuil de décision à 0.65. L’objectif était d’avoir 
le moins de faux négatifs.  

Cet ensemble de données va servir de base pour la suite : attaquer directement 
le modèle de détection de deepfake.  
 

 

8 dullage. (2025). GitHub - dullage/eyelign: A tool to align multiple portrait photos by eye position. 
GitHub. https://github.com/dullage/eyelign 
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III• Application aux deepfakes 
​  

Une fois notre système de détection mis en place, nous avons pu mettre en 
application les attaques adversariales vues en première partie afin de le tromper. 

Pour cela, nous avons ajusté les implémentations faites sur le jeu de données 
MNIST de manière à ce que les données concordent avec la dimension d’entrée du 
classifieur. Cet ajustement se réalise en deux temps. D’abord, nous modifions la 
structure de l’attaque. De manière à traiter des images qui ont trois canaux. Puis, nous 
appliquons à chaque image un prétraitement qui consiste, entre autres, à changer 
l’ordre des canaux de couleurs, redimensionner puis normaliser l’image. 

 
La dimension des images que nous traitons est de 299 par 299. Cela signifie que 

pour chaque image, il y a environ 350 fois plus de paramètres à traiter que dans le cas 
des images du MNIST (qui sont de dimension 28 par 28). Ainsi, les temps de calculs 
des attaques se sont substantiellement accrus.  

Pour cette raison, en plus de Deepnote, nous avons mis en place une instance 
EC2 ainsi qu’un bucket hébergés chez AWS, de manière à stocker et manipuler 
l’ensemble des données. Nous avons choisi d’utiliser ces technologies pour répondre 
au problème de la multiplication des temps de calculs. Ainsi, nous étions capables de 
réaliser et d’exécuter des algorithmes sophistiqués et coûteux en ressources.  

 

a/ PGD 
 

Application 
 
​ Adapter PGD à de grandes images disposant de trois canaux s’est révélé être 
une tâche simple. L’utilisation de la librairie numpy nous a facilité la modification de 
l’attaque. La plupart des calculs effectués sur les images du MNIST sont restés 
valables. Nous avons choisi d’intégrer uniquement la version non ciblée de l’attaque. 
Ce choix découle directement de la classification binaire. 
​ Comme prévu, le temps de calcul s’est accru, passant d’environ 0.2s (pour une 
image du MNIST) à 0.7s. Notons que le réglage des paramètres utilisés est nettement 
différent dans notre cas. Cela explique pourquoi l’augmentation du temps de calcul est 
peu significative. 
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Résultats 
​  
​ Les paramètres de l’attaque PGD restent les mêmes, à savoir : є (perturbation 
totale), k (nombre d’itérations) α (perturbation à chaque itération).  

La figure ci-dessus montre à gauche, une image de deepfake issue du jeu de données. 
Notre modèle prédit que c’est un deepfake à 100%. Au milieu, il y a la perturbation 
calculée par PGD. Nous l’avons multipliée par 255 de manière à mieux la visualiser. 
Finalement, l’image de droite correspond à l’original après application de la 
perturbation. Le modèle prédit l’image perturbée comme étant vraie à 99.9%. Nous 
pouvons donc dire que l’attaque a été réussie. Les paramètres utilisés sont les suivants 
: є = 10-2, k = 5 et α = 10-3. 

Les facteurs 
d’intensité de perturbation 
(є et α) sont bien plus 
faibles que lors de 
l’attaque sur les données 
du MNIST. Cela découle 
directement du fait que 
l’image est plus étendue. 
Ainsi, la proportion de 
l’image à modifier est bien 
inférieure à celle d’une 
image provenant du MNIST 
pour un succès d’attaque 
similaire. Le graphique 
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présenté ci-dessus illustre bien l’influence de l’amplitude de la perturbation totale sur 
le succès de l’attaque. Il a été généré à partir d’une trentaine d’images pour lesquelles 
le nombre d’itérations était fixé à 5. On remarque que même pour une petite 

perturbation, l’attaque 
reste très efficace.  
Le graphique ci-contre a 
été généré de la même 
manière que le 
précédent. Il présente 
l’efficacité de l’attaque 
en fonction du nombre 
d’itérations quand 
l’amplitude de la 
perturbation totale (є) 

est réglée à . 5 × 10−3

Sans surprise, nous 
remarquons que le 
nombre d’itérations est 
fortement lié au succès 

de l’attaque. 
 
D’une manière générale, il est essentiel d’appréhender la manière dont les 

différents paramètres influent sur l’efficacité globale de l’attaque ainsi que sur la 
discrétion de la perturbation générée. Nous le verrons par la suite, cette 
compréhension s’est avérée particulièrement utile quand nous avons intégré PGD dans 
le but de générer des UAP. 
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b/ DeepFool 
 

Application 
 
De la même manière que pour PGD, DeepFool a été intégrée sans entrave 

particulière. Nous avons choisi d’intégrer la version par défaut de cette attaque, à 
savoir, la version non ciblée. Le fonctionnement particulier de DeepFool ne nécessite 
que très peu de paramètres, leur réglage a donc été rapide. On retrouve un nombre 
d’itérations maximum ainsi qu’une valeur d’overshoot qui, rappelons-le, spécifie la 
marge avec laquelle la frontière doit être dépassée.  

Le temps d’exécution passe alors de 0.5s (attaque sur une image du MNIST) à 
4s. Cette différence est plus importante que dans le cas de PGD. Cela découle du fait 
que les réglages de l’attaque n’ont pas été modifiés. 
 

Résultats 

 
Sur la figure ci-dessus, nous avons, à gauche, une image de deepfake non 

modifiée issue du jeu de données. Elle est prédite comme étant un deepfake avec une 
probabilité de 100%. La perturbation calculée par DeepFool est au milieu. Nous l’avons 
multiplié par un facteur 1000 afin de la rendre visible. Finalement, à droite, nous avons 
l’image perturbée par DeepFool. Elle est prédite comme étant réelle avec une 
probabilité d’environ 52%. L’attaque fonctionne bien, le modèle a été leurré avec 
succès. L’attaque a été réalisée avec un paramètre overshoot réglé à 0.02 et un nombre 
d’itérations maximum fixé à 10. Ce paramètre visant à limiter le nombre d’itérations 
influe directement sur la réussite de l’attaque. En effet, comme présenté dans le 
graphique ci-dessous, la précision du modèle évolue rapidement puis sature après la 
cinquième itération. Maîtriser ce paramètre, c’est limiter le temps de calcul relatif à 
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l’attaque en réduisant 
légèrement son efficacité. 

Comparer l’efficacité 
d’une attaque passe par 
deux points essentiels. Le 
premier consiste à vérifier si 
le classifieur est 
correctement trompé. Dans 
notre cas, nous pouvons 
comparer en utilisant la 
prédiction du modèle. Le 
second concerne la qualité 
de la perturbation. En clair, 
“Est-ce que l’image générée 
est assez discrète pour 
passer inaperçue à l'œil 
humain ?”. Cette comparaison peut être réalisée de manière précise, en utilisant le 
score MS-SSIM. Si le score de deux images est proche de 1, c’est qu’elles sont très 
similaires. Au contraire, un score avoisinant 0 sera retourné si les images sont 
radicalement différentes. Nous utilisons donc ce score pour comparer la discrétion des 
attaques entre elles. Ainsi, dans le cas de la figure présentée dans la partie PGD, le 
score de similarité entre les deux images est de 99.966%. Dans le cas de DeepFool, ce 
score monte à 99.998%. Cela découle directement de la manière d’opérer de l’attaque 
: calculer la perturbation minimale, suffisante pour changer la classe prédite.  
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c/ UAP 
 
UAP étant un algorithme qui se repose sur des attaques adversariales telles que 

DeepFool ou PGD, nous l’avons adapté facilement en utilisant les nouvelles versions 
des attaques qu’il intègre. 

Le nombre d’images utilisées pour générer l’UAP en utilisant les algorithmes 
PGD et DeepFool s’est rapidement retrouvé limité. En effet, pour une perturbation 
universelle basée sur 784 images, le temps de calcul s’élevait à plusieurs heures.  
 

1- PGD 
 
​ Nous avons généré plusieurs perturbations universelles avec plusieurs 
paramètres. Finalement, l’UAP qui s’est révélé être la plus efficace a été générée avec 
les paramètres de PGD réglés de cette manière : є = 0.02, α = 10-3 et K = 100. 

 
​ La figure ci-dessus montre les résultats de l’attaque. À partir d’une image 
originale (à gauche) prédite comme étant un deepfake à 100%, nous appliquons la 
perturbation universelle calculée au préalable (image du milieu, nous l’avons 
augmenté afin de mieux la visualiser). Finalement, nous obtenons l’image présente à 
droite, prédite comme étant réelle avec une probabilité de 96%. Nous pouvons alors 
dire que l’attaque fonctionne dans ce cas. Nous avons ensuite calculé le fooling rate sur 
un échantillon de 1632. C’est de cette manière que nous avons obtenu un score égal à 
97.24%.  
​ Le point faible général des attaques universelles est que l’exemple adversarial 
est peu similaire à l’image originale. Dans notre cas, le score SSIM moyen est de 
96.44%, avec un minimum de 92.887%, ce qui est légèrement plus faible que les 
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attaques individuelles mais reste raisonnablement peu visible. À titre d’exemple, le 
score de similarité entre les deux images ci-dessus est de 98.147%. 
​  

En regardant bien la perturbation générée, nous remarquons la présence d’une 
bande claire en haut de l’image. Celle-ci est causée par le prétraitement de notre jeu 
de données : lorsque le visage est trop proche de la bordure haute de l’image d’origine, 
le recentrage effectué pour améliorer les performances du modèle entraîne 
l’apparition d’une bande noire. 

 
2- DeepFool 

 
Tout comme pour PGD, nous avons testé plusieurs paramètres pour générer 

l’UAP. DeepFool possédant moins de paramètres, cette étape a été plus rapide. Nous 
avons atteint le fooling rate cible de 90% pour l’ensemble des 784 images sur 
lesquelles nous avons généré la perturbation. Pour cela, le paramètre overshoot était 
réglé à 0.3, dans le but d’obtenir une UAP générale, fonctionnant le mieux possible sur 
des images absentes du support de calcul. 

 
​  
La figure ci-dessus montre l’application de la perturbation calculée au préalable sur 
une image classifiée comme étant un deepfake à 100% (image de gauche). La 
perturbation (image du milieu) a été augmentée cinq fois plus que celle présentée 
dans la partie précédente. Le score SSIM de ces images est de 99.941%. Cette forte 
similarité s’explique par le fonctionnement de l’algorithme de DeepFool qui, 
rappelons-le, cherche à chaque itération la perturbation minimale pour franchir la 
frontière de décision. Le leurre généré est alors très spécifique aux images support. 
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De la même manière qu’avec la génération de l’UAP en utilisant PGD, nous avons 
évalué cette perturbation sur un ensemble de 1632 images. Nous avons obtenu un 
fooling rate égal à 82.97%. Cela signifie que dans 17% des cas, l’UAP a échoué à faire 
changer la classe prédite par le modèle. On comprend alors que la perturbation est 
certes plus discrète que celle générée dans la partie précédente (on parle d’un score 
de similarité moyen supérieur à 99%). Toutefois, son efficacité reste limitée. 

En effet, nous remarquons que la perturbation générée se concentre davantage 
sur la zone du visage, qui est plus à même de changer. Nous sommes d’ailleurs 
capables de distinguer la zone des yeux.  

Notons que sans l’étape cruciale d’alignement des visages en fonction des yeux, 
la perturbation universelle obtenue n’aurait pas été aussi efficace. 

 
 
3- Essais en black-box 

 

L’une des particularités des UAP, telles qu’elles sont décrites par 
Moosavi-Dezfooli, Fawzi, Fawzi et Frossard9, est qu’elles conservent une bonne 
efficacité même en changeant de modèle. Cela les rend intéressantes pour des 
attaques en “black-box”, c’est-à-dire sans accès au fonctionnement interne du modèle.  

 
C’est dans cette optique que, d’après l’idée de nos encadrants, nous avons 

essayé de tromper un modèle de détection de deepfakes disponible en ligne. Pour 
cela, nous avons appliqué les UAP générées à partir de notre modèle sur des images de 
deepfakes générées par un outil en ligne. Les tests qui suivent ont été réalisés afin de 
valider cette propriété dans un cadre réaliste et de tester l’efficacité de nos 
perturbations sur un autre système de détection. 
 

Nous nous sommes donc dans un premier temps servi de l’outil aifaceswap10 
pour générer des deepfakes en faisant un face swap des visages de célébrités. Dans la 
figure ci-dessous, un exemple avec Céline Dion et Donald Trump. 

10 Swap face with Ai Online. AI Face Swap. (n.d.). https://aifaceswap.io/ 

9 Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., & Frossard, P. (2016). Universal adversarial perturbations. 
arXiv. https://arxiv.org/abs/1610.08401 
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Nous avons ensuite testé nos attaques adversariales sur le modèle de détection 
de deepfake proposé par faceonlive.11 Pour cela, nous avons appliqué le même 
prétraitement que pour les images de notre précédent jeu de données. 

11 FaceOnLive. (n.d.). Deepfake Detector - a Hugging Face Space by FaceOnLive. 
https://huggingface.co/spaces/FaceOnLive/Deepfake-Detector 

26 



Cindy Hartmann - Antoine Montier | Attaques Adversariales | 2025 

 
​ Comme nous pouvons le constater, nous sommes capables de tromper le 
système, cela en appliquant sur l’image la perturbation universelle précédemment 
générée avec PGD. 

En revanche, nos essais avec la perturbation universelle générée par DeepFool 
se sont révélés moins concluants, n’affectant presque pas la prédiction du système. 
 
​ Ces résultats viennent corroborer l’hypothèse selon laquelle UAP-PGD est plus 
facilement transférable que UAP-DeepFool, le bruit de ce premier étant moins 
spécifique aux images sur lesquelles il a été calculé. Aussi, la perturbation obtenue par 
PGD cherche à radicalement faire changer la prédiction du modèle. Tandis que celle 
calculée par DeepFool a pour objectif d’être la plus fine possible, juste assez pour 
changer la classe prédite. 
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Conclusion 
 

Au cours de ce projet, nous avons, dans un premier temps, étudié différents 
types d’attaques adversariales et leur fonctionnement, puis nous les avons appliquées 
à un modèle de détection de deepfake par face swapping. L’objectif était d’évaluer 
dans quelle mesure ces attaques pouvaient dégrader les performances du détecteur 
sans altérer visiblement les images. 

 
Nous avons été surpris par l’efficacité de ces attaques. Certaines se sont 

révélées très performantes, avec des perturbations quasiment imperceptibles pour 
l'œil humain. Cela met en évidence que les systèmes de détection de deepfakes, 
même s’ils constituent une première barrière contre les menaces qu’ils représentent, 
restent vulnérables.  
 

Des améliorations restent encore à apporter vis-à-vis du travail fait : les 
contraintes temporelles du projet et la puissance de calcul de notre matériel ont limité 
nos essais, et nous aurions aimé pouvoir expérimenter l'efficacité de ces attaques sur 
des modèles de détection de deepfake modernes, avec des jeux de données plus 
récents. 

 
Au-delà de ces perspectives d’amélioration, une piste de poursuite du projet se 

dessine : l’évaluation des stratégies de défenses contre ces attaques. En effet, 
maintenant que nous avons mis en lumière les vulnérabilités des systèmes de 
détection de deepfakes, il nous semble légitime de réfléchir à comment les renforcer.  

Un exemple de technique de défense consiste à ajouter des images perturbées 
dans le jeu de données servant à l'entraînement du classifieur. On parle alors 
d’entraînement adversarial. D’autres approches se concentrent plutôt sur la détection 
préalable des perturbations, avant l’évaluation par le modèle.  

La mise en place de telles mesures est indispensable dans un contexte où les 
attaques se renouvellent et se complexifient constamment. La défense ne peut se 
contenter de simplement réagir : elle doit faire preuve d’anticipation et d’innovation. 
L’enjeu final serait de conserver une robustesse afin que les systèmes de détection 
aient toujours une longueur d’avance sur les méthodes de contournements récentes. 
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Finalement, ce projet en collaboration avec le laboratoire du GREYC s’est révélé 
très enrichissant, et nous a permis de renforcer nos compétences à la fois techniques 
et méthodologiques.  

D’abord, en intelligence artificielle, par la maîtrise de techniques dites 
“white-box”. Nous avons également affermi notre compréhension des chaînes 
d’attaque mises en place par des acteurs malveillants. La première partie nous a 
permis de perfectionner nos compétences rédactionnelles ainsi que notre esprit 
critique. En outre, les défis relevés par le manque de puissance de calcul nous ont 
permis d’affiner nos connaissances en infonuagique. 

 
Nous vous remercions de votre lecture.​
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