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Avant-propos

Ce rapport s’inscrit dans le cadre du projet de troisieme semestre de Master de
Cybersécurité, réalisé courant novembre et décembre 2025.

Il a été encadré par Christophe Charrier, responsable de l'équipe SAFE (Sécurité,
Architecture, Forensique, biomEtrie) au GREYC (Groupe de recherche en informatique,
image et instrumentation de Caen), et Emmanuel Giguet, chargé de recherches au
CNRS affecté au GREYC.

Avant toute chose, nous tenons a les remercier pour leur accompagnement et
leurs précieux conseils tout au long de ce travail.
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Introduction

Avec l'essor de l'Intelligence Artificielle et sa démocratisation aupres du grand
public ces dernieres années, il est a la portée de tous de générer et de manipuler des
contenus multimédias. Ces technologies atteignent aujourd’hui un niveau suffisant
pour produire aisément des images, sons ou des vidéos d’un réalisme capable de
tromper les sens humains.

C’est dans ce cadre que les deepfakes s’inscrivent. Pour reprendre la définition
donnée par la loi européenne sur lintelligence artificielle (article 3 point 60 du
Reglement (UE) 2024/1689, dit “AI Act”), un deepfake désigne une image, un contenu
audio ou vidéo généré ou manipulé par IA, présentant une forte ressemblance avec
des personnes, des objets, des lieux, des entités ou encore des événements réels, et
qui pourrait apparaitre faussement authentique ou vrai pour une personne.

Les deepfakes sont aujourd’hui utilisés dans des contextes légitimes tels que le
cadre du divertissement ou de la reconstitution historique. Cependant, ils peuvent
également étre utilisés a des fins malveillantes, comme la diffusion de contenus
trompeurs, la désinformation ou encore l'usurpation d’identité.

En 2024, un deepfake du directeur financier d’'une entreprise a été généré a
partir d'extraits de conférences disponibles publiquement sur Youtube. Ce deepfake a
ensuite été immiscé dans une visioconférence, demandant d’effectuer un transfert
d’argent vers un compte. Le préjudice a été d’environ 24 millions d’euros.

Cet exemple, ciblant la multinationale Arup, basée a Hong-Kong n’est pas un
cas isolé. D’aprés le rapport sur la fraude d’identité publié par SumSub en 2024%, on
parle d’une augmentation a l'’échelle mondiale, de 400% du nombre de deepfakes
détectés entre 2023 et 2024. Les deepfakes sont utilisés dans 7% des tentatives de
fraude, ciblant autant les particuliers que les entreprises.

Lemploi mal intentionné de cette technologie inquiete. En effet, lors d’un
sondage publié par le méme organisme en 2024, 81% des questionnés affirmaient
étre soucieux de l'impact des deepfakes sur l'intégrité électorale.

Face a ces risques émergents, la mise en place de systéemes capables de
détecter les deepfakes est devenu un enjeu majeur. Ces systémes visent a confirmer

1 Sumsub. (2024). Identity fraud report 2024. Disponible sur Scribd :
https://www.scribd.com/document/909970242/Sumsub-Identity-Fraud-Report-2024
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lauthenticité des contenus, en identifiant les traces laissées par les processus de
génération et manipulation artificielle. Ils jouent un rdéle important vis-a-vis de la
protection de linformation et de la réputation des individus, ainsi que dans la
confiance accordée aux médias numériques.

Lintelligence artificielle s’est imposée comme approche privilégiée pour la
conception de systéemes de détection de deepfake. Néanmoins, ceux-ci ne sont pas
infaillibles et il existe diverses manieres de les contourner.

Il est par exemple possible d’ajouter des perturbations minimes pour tromper le
détecteur sans dégrader le contenu de maniére visible. C’est le principe des attaques
adversariales.

Notre projet s’inscrit dans ce contexte, et se concentre justement sur 'étude
des attaques adversariales appliquées aux systemes de détection de face swapping,
une technique de deepfake consistant a apposer le visage d’une personne sur une
autre.

Nos objectifs étaient les suivants :

e Comprendre le fonctionnement des attaques adversariales;

e Appliquer ces attaques a un modele de détection de deepfakes / face swapping
existant ;

e Mesurer la dégradation des performances du détecteur.

Pour les atteindre, nous avons dans un premier temps effectué un état de l'art
des attaques adversariales. Puis, nous avons choisi un modeéle et un jeu de données de
référence. Enfin, nous avons appliqué certaines de ces attaques sur notre modéle et
constaté la dégradation de ses performances.

Nous détaillerons chacune de ces étapes dans le présent rapport.
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I. Etat de Uart des attaques adversariales

La premiére phase de notre projet a été consacrée a la rédaction d’un état de
lart concernant les attaques adversariales. Nous avons commencé par nous
documenter sur les pratiques et techniques de ce domaine.

Au total, nous avons étudié cinq types d’attaques dans notre état de l'art : la
Fast Gradient Signed Method (FGSM), la Projected Gradient Descent (PGD), DeepFool et
les Universal Adversarial Perturbations (UAP) ainsi qu’une derniere, non présentée ici.
Ces attaques fonctionnent sur des modeles dits en “white-box” : nous pouvons
accéder aux parametres du modele ainsi qu’aux gradients, c’est-a-dire a la direction au
sens mathématique dans laquelle changer les pixels de 'image pour minimiser ou
maximiser l'erreur de prédiction.

L'attaque la plus simple a comprendre, FGSM fut notre premier pas dans ce
domaine. Nous l'avons testé avec le but de comprendre et d’implémenter une attaque
typique. Il est facile de trouver des informations concernant FGSM. C’est pour cette
raison que nous l'avons privilégié. La seconde attaque, PGD, est une version plus
poussée de FGSM. Cela nous a familiarisé avec la maniére d’implémenter et de
modifier le comportement de ces techniques. La troisieme attaque que nous avons
étudiée est DeepFool. C’est une attaque plus complexe a implémenter. Elle est connue
pour son efficacité dans le domaine des deepfakes. Finalement, nous avons étudié les
familles d’attaques UAP. Ces techniques se démarquent en calculant une unique
perturbation universelle qui pourra ensuite étre appliquée aux données souhaitées.
L’étude des UAP nous a permis de renforcer encore nos connaissances en intégrant des
attaques déja développées afin de calculer cette perturbation.

Pour chaque attaque, nous avons d’abord étudié leur principe et leur algorithme
en nous appuyant sur des publications scientifiques et des dépdts Github. Ensuite,
nous les avons implémentés nous-mémes, ce qui nous a permis de mieux saisir leurs
différents résultats.

Pour cela, nous avons travaillé sur un environnement collaboratif en ligne:
Deepnote. Nous avons utilisé la librairie Tensorflow de python avec les images du
MNIST, des chiffres dessinés a la main. Nous avons créé un modéle de classification
simple mais performant sur ces images : son accuracy, c’est-a-dire la proportion

d’images correctement prédites, est supérieure a 97%. L'ensemble constitué du
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modele et du jeu d’images a été notre base pour implémenter et tester ces attaques.
La figure ci-dessous montre les prédictions du classifieur sur ces images. Le titre de
chaque chiffre présente d’abord le chiffre vrai (‘True’) puis la prédiction du modele
(‘Pred’) ainsi que sa probabilité.

True: O | Pred: O (%9.5%) True: 1| Pred: 1 (98.9%) True: 2 | Pred- 2 [100.0¢4%) True: 3 | Pred: 3 {10000%) True: 4 || Pred: 4 (99, 7%)

5 | Presl & (00, 8% Truis: 0 | Precl & (05 5%) Trie: 1| Prsd 7 (100.0%) Truii: B | Prsd: 0 (00, 8% Truig: 0 || Precl: 9 (04, 68%

Ce que vous allez lire est une version synthétisée de 'état de l’art, nécessaire
pour la compréhension globale de ce rapport. La version compléte de l'état de l'art, les
implémentations ainsi que les documents consultés sont disponibles en annexe.

a/ FGSM
Principe

L'attaque Fast Gradient Sign Method (FGSM) consiste a générer une image
adversariale en ajoutant un bruit calculé a 'aide de la dérivée du colit du réseau. C’est
une fonction mathématique mesurant a quel point la prédiction est mauvaise par
rapport a la réponse attendue. L'idée est de “pousser” les pixels de I'image dans la

direction qui augmente le colt si on souhaite tromper au

oy maximum le modele. L'attaque est dite “non ciblée” (figure
de gauche, 'image est prédite comme étant un 9 avec une
probabilité de 99.8%). On peut également procéder de

True: 4 | Pred: 7 (62.8%)

maniére a leurrer le modele dans un sens particulier
(figure de droite, faire prédire une image de 4 comme
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étant un 7. L'image est prédite comme étant un 7 avec une probabilité de 63%). Dans

ce cas-la, l'attaque est dite “ciblée”, on cherche alors a diminuer le co(t de la classe
cible.

Implémentation

Cette attaque est assez simple a implémenter. En effet, on calcule la dérivée du
colit par rapport a 'image en entrée. On crée alors la perturbation qui va dans ce sens.
On multiplie ensuite cette perturbation par un facteur d’intensité en fonction du
résultat souhaité. Finalement, on ajoute la perturbation a limage pour obtenir
'exemple adversarial.

Le seul parametre de cette technique est le facteur d’intensité de la
perturbation, noté €. Sa valeur, entre 0 et 1 permet de jouer avec l'efficacité et la
visibilité de l'attaque. Réglé proche de 0, 'attaque sera peu visible, mais sans efficacité
garantie. D’un autre c6té, pour des valeurs avoisinant 1, 'attaque sera tres visible mais
tres efficace. Ce réglage est une maniere de comprendre le dilemme
discrétion/efficacité des attaques. La figure ci-contre présente le taux de précision
(proportion d’images perturbées ayant trompé le modeéle) des deux versions de
attaque pour des valeurs de € comprises entre 0 et 0.3. Ce graphique a été réalisé a
partir de 96 images. On remarque que la version non ciblée (bleu) sature pour un €
supérieura 0.17.

Precizion en fonction d'e

150 1 — untamgeted
Torpaiadd

n

L'attaque FGSM est efficace, mais reste tout de méme limitée. En effet, la qualité
de 'exemple généré pour la méme quantité de bruit est généralement inférieure a celle

des attaques récentes. Nous pouvons d’ailleurs le voir sur le graphique plus haut, la
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précision de la version ciblée dépasse a peine les 70% pour un € réglé a 0.3. Cela est
en partie explicable par le fait que la perturbation soit calculée en une seule fois.

Nous allons a présent voir en quoi l'attaque PGD est pertinente et quelles
réponses elle va proposer aux limites de FGSM.

b/ PGD
Principe

L'attaque Projected Gradient Descent (PGD) peut étre vue comme une version
itérative de la précédente attaque. L'idée générale est de répéter plusieurs fois FGSM
avec une intensité tres faible, en recalculant a chaque
itération la direction de la perturbation a effectuer. Cette

True: 4 | Pred: 9 (99.5%) True: 4 | Pred: 7 (100.0%)

i technique dispose également de deux versions. La figure
— de gauche montre le résultat de la version non ciblée de
lattaque, ici le modele prédit un 9 avec 99.5% de
probabilité. La figure de droite a été obtenue aprés une

attaque PGD, ayant pour cible 7. La prédiction obtenue est un 7 avec une probabilité de
100%.

Implémentation

A partir de FGSM, l'implémentation de cette attaque ne nécessite que peu
d’étapes. D’abord, nous appliquons un bruit aléatoire avant tout calcul. Cela dans le
but d’éviter des minimums locaux du co(t du réseau. Ensuite, nous appliquons k fois
l'algorithme FGSM avec un facteur d’intensité o. A chaque itération, l'image est mise &
jour avec la nouvelle perturbation. Ainsi, 'exemple adversarial final se construit peu a
peu. Finalement, on vérifie que la modification totale ne dépasse pas un facteur €.

On remarque alors qu’il y a plus de paramétres a manipuler. De maniéere
générale, on choisi un nombre d’itérations k compris entre 20 et 100, un facteur de
perturbation totale € inférieur a 0.3 et une intensité de modification «
approximativement égale a k/e. A titre d’exemple, les images présentées ci-dessus ont
été générées avec ces parametres : (€ = 0.2, k =40, o = 0.01).

Le graphique présent ci-dessous détaille, pour chaque chiffre cible, la précision
de l'attaque en fonction du parameétre € pour 60 images. On remarque alors que la
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précision globale est nettement supérieure a celle obtenue avec FGSM en version
ciblée. On remarque également qu’il est plus compliqué de tromper le modéle dans le
sens de certains chiffres (notamment le 1 dans ce cas). Cela montre que chaque
donnée n’est pas égale face a ce type d’attaque.

Cette technique propose donc de meilleurs résultats au prix de calculs plus
complexes. Cependant, PGD reste limitée. Par exemple, trouver le bon réglage des
parametres peut nécessiter plusieurs exécutions. Aussi, le probleme des minimums
locaux évoqué dans la partie précédente est atténué par 'approche itérative, mais
existe toujours. Une variante de PGD nommée MIM cherche a répondre a cela en
ajoutant une notion d’inertie, se concentrant alors davantage sur le minimum global.

100 Classe n'Q
Clasze nl
Classe n*2 e

Classs n*4
Claiss w5
Claiss n™é i

ao

Classs n"8

DeepFool
Principe

A la différence des autres attaques, DeepFool ne cherche pas a maximiser une
valeur de colt ou a modifier les pixels selon la direction du gradient. L'idée de cette
attaque est de modifier 'image de maniére a ce que la prédiction franchisse une des
frontieres de décision du modele. C’est-a-dire que la classification de 'image traverse
une des limites internes du modéle, entrainant ainsi une erreur de prédiction.

Cette approche est particuliere, car elle va calculer le bruit minimal permettant
de changer la classe prédite de l'image. L'attaque fonctionne alors, par défaut, en
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version non ciblée. Toutefois, il existe une variante de DeepFool, cherchant a franchir
cette fois, non pas n’importe quelle frontiére, mais plutét la frontiere avec une classe
cible. Ainsi, nous sommes capables de faire fonctionner 'attaque de maniére ciblée ou
non ciblée.

L'image de gauche est obtenue par la version non ciblée de 'attaque. Le modéle
prédit un 7 avec une probabilité de 49%. Quant a l'image de droite, elle cible le
chiffre 4. Le modele classe cette image comme étant un 4
avec une probabilité de 23%. Ces probabilités sont
II||I nettement inférieures a celles obtenues avec les

True: 4 | Pred: 7 (49.2%)

True: 7 | Pred: 4 (23.4%)

précédentes attaques. Cela vient du fait que le calcul
s’arréte dés que le modeéle classifie le chiffre comme
appartenant a une autre classe.

Implémentation

Cette attaque est plus complexe a implémenter que les derniéres. En effet, elle
nécessite l'accés aux frontieres de décision du classifieur. La premiére étape de
attaque consiste alors a linéariser le modéle, de maniére a mettre en évidence ces
frontieres. Ensuite, tant que la classe prédite reste inchangée, on applique la
perturbation minimale sur 'image, de facon a suivre le chemin le plus court vers la
frontiere la plus proche. Quand la classe prédite change, on continue légérement dans
cette direction afin de bien dépasser la frontiere. C’est le paramétre overshoot qui
définit Uintensité de ce dernier déplacement. Par exemple, les images ci-dessus ont
été générées avec un overshoot réglé a 0.02. Il est également possible de fixer le
nombre d’itérations maximal. Lors de nos tests sur 50 images, la précision de l'attaque
atteint 100% au bout de 29 itérations. Le graphique présentant la précision d’attaque
en fonction du nombre d’itérations est disponible en annexe.

Les résultats de cette technique peuvent paraitre impressionnants, cependant,
comme toute attaque adversariale, DeepFool présente des faiblesses.

En effet, l'attaque est moins efficace dans le cas des classifications non binaires,
ou avec beaucoup de classes (Comme ici, nous avons 10 classes). C’est d’ailleurs pour
cette raison qu’il nous a fallu presque 30 itérations avant d’atteindre une précision
d’attaque égale a 100%.

10
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Une deuxiéme limitation découle directement de la relation entre l'algorithme et
le modéle. L'image adversariale obtenue fonctionne trés bien pour le modele.
Cependant, si larchitecture du modele change légerement ou si l'on souhaite
transférer 'image vers un modele de type black-box, les images générées deviennent
rapidement obsolétes.

d/ UAP
Principe

Les Universal Adversarial Perturbations (UAP) sont, comme leur nom l'indique,
des perturbations universelles. Contrairement aux attaques vues précédemment, une
UAP est générée a partir d’un jeu d’images, et peut tromper le modele sur un grand
nombre d’images de ce jeu. Le bruit n’a pas besoin d’étre recalculé pour chaque image.
On se contente simplement de réaliser une addition pixel par pixel, appliquant alors le
bruit comme un masque sur l'image. En procédant ainsi, les UAP réalisent une attaque
non ciblée.

Pour générer une UAP, il faut itérer plusieurs fois sur le jeu de données. A
chaque passage, on identifie les images qui ne trompent pas encore le modele et on
cherche une perturbation qui les améne a changer de classe. Ces modifications locales
nous permettent de mettre a jour le vecteur de perturbation global.

Nous réitérons sur le jeu de données jusqu’a ce que ce vecteur de perturbation
arrive a tromper le modele sur un certain pourcentage du jeu de données, appelé
fooling rate.

Pour calculer les perturbations locales, UAP repose sur un algorithme d’attaque
adversariale. Il est courant d’utiliser DeepFool, mais nous pouvons le remplacer par
d’autres attaques. Dans notre cas, nous avons essayé dans un premier temps avec
DeepFool, puis avec PGD. Ces différentes approches permettent de tirer parti des
avantages et inconvénients liés a chaque attaque. Nous verrons dans la partie III en
quoi l'algorithme utilisé pour générer 'UAP améne a des résultats différents.

11
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Implémentation

- DeepFool

True: 4 | Pred: 0 (92.1%)

Les figures ci-contre montrent, a gauche, une
perturbation universelle générée par UAP-DeepFool sur
200 images du jeu de données MNIST. Elle a été obtenue
en une seule itération et a un fooling rate de 87.5%. A
droite, un exemple d’application sur une image du jeu de
données. L'image est prédite comme étant un 0 avec une probabilité de 92%

- PGD

Pareillement, les figures ci-contre montrent, a e o
gauche, a quoi ressemble une UAP générée avec PGD, et a
droite, un exemple d’application sur une des images du
MNIST. Comme les temps de calculs étaient
sensiblement plus longs qu’avec DeepFool, nous avons d{
baisser le nombre d’images dans le jeu de données a 100, ainsi que le fooling rate
ciblé. Cela nous a permis d’obtenir un fooling rate de 62% en 2 itérations. L'image de
droite est prédite comme étant un 8 avec une probabilité de 65%

Ce que l'on constate immédiatement avec les UAP, c’est qu’elles sont beaucoup
moins discrétes que les attaques présentées précédemment. Cela découle
directement du fait que l'on géneére un leurre capable de tromper le modéle quand il
est appliqué sur différentes images. Le colt de l'efficacité de 'UAP se ressent alors
dans lintensité du bruit présent. Notons qu’il est possible de régler la magnitude de
UUAP. C’est-a-dire qu’il est possible de limiter l'intensité des perturbations, de la
méme maniere qu’avec le parameétre € des attaques FGSM et PGD.

Un autre aspect a prendre en compte lorsque 'on travaille avec des UAP est le
temps de génération de la perturbation. Comme nous itérons plusieurs fois sur le jeu
de données complet, plus celui-ci est grand, plus les calculs sont complexes et longs.

12
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Conclusion

L'état de 'art intégral ainsi que l'implémentation des attaques et les ressources
consultées sont disponibles en annexe.

Cette premiére étape nous a permis de comprendre le fonctionnement et
l'ampleur de ces techniques. Lors de la rédaction de 'état de l'art, nous avons étudié
cing familles d’attaques et nous en avons retenu trois. Chacune de ces attaques a été
implémentée puis testée afin de comprendre en détail son fonctionnement ainsi que
Uinfluence des parametres.

Dans la version complete de 'état de 'art, nous avons étudié la Jacobian-based
Saliency Map Attack (JSMA), basée sur une carte de saillance. Nous n’avons pas utilisé
cette attaque par la suite en raison des importants temps de calcul. C’est pour cette
raison que nous avons choisi de ne pas la mentionner dans le rapport ci-présent.

Nous en avons profité de cette phase pour vérifier que les attaques testées
étaient fonctionnelles et confirmer leur utilité pour la suite de ce projet : attaquer un
systeme de détection de deepfake.

Tableau récapitulatif

Attaque Original FGSM PGD DeepFool UAP-DF  UAP-PGD
Temps () - 107 101 101 103 103
Classe 9 7 7 7 0 8
prédite (95%) (99.8%) (99.9%) (46%) (99.5%) (99.4%)
M 77717

13
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II » Systemes de détection de deepfakes

A présent que nous comprenons le fonctionnement et Uintérét de ces attaques
appliqués a un jeu de données simple avec un modele peu complexe, nous allons nous
pencher sur l'aspect pratique de notre travail : implémenter ces attaques sur des
images de visages dans le but de tromper un modele.

a/ Choix du modele et du jeu de données

Nous cherchons d’abord a obtenir un modéle de classification ainsi qu’un jeu de
données. En réalité, 'approche est la méme que dans la premiére partie.

1/ Modeéle
La question du choix du modéle a soulevé trois pistes principales.

Premiérement, nous nous sommes penchés sur le modéle ResNet-507. Sorti en
2015, l'utilité premiere de ce modele est la classification d’images au sens large. Il a
donc fallu laffiner avec de nouvelles données afin qu’il se comporte comme un
classifieur binaire (image vraie ou image fausse). Cette premiere option s’est révélée
intéressante, car nous avions le controle sur le jeu de données d'entrainement ainsi
que sur les hyper-parametres du systeme. Toutefois, nous avons été contraints
d’abandonner cette piste, car la puissance et le temps de calcul requis n’étaient pas
réalistes.

Dans un second temps, nous avons cherché un modeéle déja entrainé a classifier
de maniéere binaire une image de visage. Nous avons choisi d’utiliser le classifieur de
selimsef®, vainqueur du DeepFake Detection Challenge (2019). Cependant, nous avons
été rapidement contraints d’abandonner cette piste. En effet, il était simple de réaliser
une prédiction avec ce modele. Toutefois, la plupart des attaques nécessitant un acces
aux poids du modele, nous devions nous munir du fichier des poids ainsi que d’assez

2 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv.
https://arxiv.org/abs/1512.03385
3 Selimsef. (2020). Selimsef/dfdc_deepfake_challenge: A prize winning solution for DFDC Challenge.

GitHub. https://github.com/selimsef/dfdc deepfake challenge
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de puissance de calcul afin d’obtenir la meilleure perturbation. Or, le modéle ayant été
créé 6 ans auparavant, les liens vers les poids de ce dernier étaient obsolétes. Nous
avons donc eu des difficultés a obtenir les parameétres du classifieur. De plus, le poids
du modele s’est révélé étre trop important par rapport a la puissance dont nous
disposions.

Finalement, aprés ces deux abandons, nous avons utilisé le classifieur de i3p9*,
une version affinée de Xception®, un modéle entrainé avec la librairie torch. Ce modéle
présente les avantages d’étre facilement accessible et léger. Nous avions donc la
possibilité de faire des prédictions ainsi que d’accéder aux gradients du modéle.

Comme précisé dans la premiéere partie, nous travaillons avec le module
Tensorflow. Par souci de compatibilité, nous avons donc converti le modele en un
format utilisable avec Tensorflow a l'aide d’outils tels que nobuco.

2/ Choix du dataset

En 2019, les chercheurs de 'université de Munich publient le jeu de données
FaceForensics++°. Il est construit a partir de mille vidéos issues de Youtube sur
lesquelles une transformation a été appliquée. Nous avons donc téléchargé puis extrait
vers des images la moitiée de ces vidéos, portant la taille de notre jeu de données
au-dela de 2 Téraoctets.

Une fois le jeu de données téléchargé, nous avons cherché a vérifier que les
prédictions du modéle sur ce dernier étaient cohérentes.

b/ Evaluation du modéle

Cette étape d’évaluation est cruciale. En effet, on ne veut pas construire une
attaque sur le modéle en utilisant une image qu’il n’est pas capable de reconnaitre.

413p9. (2021). GitHub - i3p9/deepfake-detection-with-xception : Deepfake detection. GitHub.
https://github.com/i3p9/deepfake-detection-with-xception

> Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. arXiv.
https://arxiv.org/abs/1610.02357

® Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Niefdner, M. (2019). FaceForensics++:

Learning to detect manipulated facial images. arXiv. https://arxiv.org/abs/1901.08971
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Nous avons donc vérifié que les prédictions du modele correspondent bien aux
étiquettes des images.

1/ Premiers résultats

Il a d’abord été nécessaire d’extraire les visages des images. Pour cela, nous
avons utilisé Uoutil de freearhey’ qui découpe les visages présents dans une image,
créant ainsi autant de sous-images que de visages. Nous avons extrait 4356 images de
visage. Comme nous pouvons le voir sur la figure ci-dessous, les résultats obtenus sont
mauvais. En effet, les distributions des prédictions des images vraies et fausses sont
presque superposées. La précision (proportion des cas réellement faux parmi tous les
cas classés faux) du modeéle et le recall (proportion des cas faux classés faux) sont
alors restés aux alentours de 0.50.

pradictiors distribuben

Al Fakes
Aciial Resls
= Thieshald 4.7

&n na 1] e an 14
Tebe” predicied prohehibiy

Nous avons donc cherché a afficher les données les moins bien prédites : des visages
difficilement perceptibles, avec un objet bloquant une partie du visage. Parfois méme,
des formes étaient interprétées comme étant un visage (des exemples de photo ainsi
que les métriques de cette étape sont disponibles en annexe). Nous avons donc
cherché a corriger cela.

2/ Amélioration du dataset

Nous avons alors deux possibilités qui s’offrent a nous pour résoudre ce
probleme. La premiere est d’affiner le modéle. La seconde est d’adapter le jeu de
données. Nous sommes partis sur la deuxieme solution pour des raisons de puissance
de calcul et de faisabilité.

7 Freearhey. (s. d.). GitHub - freearhey/face-extractor : Python script that detects faces on the image or
video, extracts them and saves to the specified folder. GitHub.
https://github.com/freearhey/face-extractor
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Nous avons alors utilisé Uoutil de dullage®, visant & aligner les yeux avec
’horizon ainsi qu’a centrer le visage dans l'image. Ainsi, les photos avec au moins un
ceil caché étaient filtrées. Le fait que les visages soient centrés et a la méme échelle a
joué un réle important dans 'amélioration des résultats. Ensuite, nous avons remarqué
que certaines images étaient zoomées ou pixelisées. Pour corriger cela, nous avons
fixé un seuil de qualité d’image minimale afin de filtrer de maniére plus fine.

3/ Résultats aprés traitement des images en entrée

Cette étape d’écrémage du jeu de données s’est révélée cruciale.

predictiong distributizn

Comme nous le remarquons sur la figure ci-dessus, les résultats d’évaluation du
classifieur sur le jeu de données filtré sont conformes a nos attentes. En effet, on
observe un clair divorce entre les deux distributions de prédictions. La précision
atteinte est de 0.96 pour la classe vraie (en vert) et 0.73 pour la classe fausse (en
rouge). Ce qui est intéressant, c’est le recall de la classe fausse. Il est égal a 0.97. Cela
signifie que seulement 3% des images de deepfakes seront qualifiées comme étant
vraies. Ce score de recall est bien supérieur a celui de la classe vraie (0.64). Nous
avons obtenu ces métriques en fixant un seuil de décision a 0.65. L'objectif était d’avoir
le moins de faux négatifs.

Cet ensemble de données va servir de base pour la suite : attaquer directement
le modéle de détection de deepfake.

8 dullage. (2025). GitHub - dullage/eyelign: A tool to align multiple portrait photos by eye position.
GitHub. https://github.com/dullage/eyelign
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III. Application aux deepfakes

Une fois notre systéme de détection mis en place, nous avons pu mettre en
application les attaques adversariales vues en premiére partie afin de le tromper.

Pour cela, nous avons ajusté les implémentations faites sur le jeu de données
MNIST de maniére a ce que les données concordent avec la dimension d’entrée du
classifieur. Cet ajustement se réalise en deux temps. D’abord, nous modifions la
structure de l'attaque. De maniére a traiter des images qui ont trois canaux. Puis, nous
appliquons a chaque image un prétraitement qui consiste, entre autres, a changer
Uordre des canaux de couleurs, redimensionner puis normaliser l'image.

La dimension des images que nous traitons est de 299 par 299. Cela signifie que
pour chaque image, il y a environ 350 fois plus de parametres a traiter que dans le cas
des images du MNIST (qui sont de dimension 28 par 28). Ainsi, les temps de calculs
des attaques se sont substantiellement accrus.

Pour cette raison, en plus de Deepnote, nous avons mis en place une instance
EC2 ainsi qu’un bucket hébergés chez AWS, de maniére a stocker et manipuler
'ensemble des données. Nous avons choisi d’utiliser ces technologies pour répondre
au probleme de la multiplication des temps de calculs. Ainsi, nous étions capables de
réaliser et d’exécuter des algorithmes sophistiqués et coliteux en ressources.

a/ PGD
Application

Adapter PGD a de grandes images disposant de trois canaux s’est révélé étre
une tache simple. L'utilisation de la librairie numpy nous a facilité la modification de
lattaque. La plupart des calculs effectués sur les images du MNIST sont restés
valables. Nous avons choisi d’intégrer uniquement la version non ciblée de l'attaque.
Ce choix découle directement de la classification binaire.

Comme prévu, le temps de calcul s’est accru, passant d’environ 0.2s (pour une
image du MNIST) a 0.7s. Notons que le réglage des parametres utilisés est nettement
différent dans notre cas. Cela explique pourquoi 'laugmentation du temps de calcul est
peu significative.
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Résultats

Les parametres de l'attaque PGD restent les mémes, a savoir : € (perturbation
totale), k (nombre d’itérations) o (perturbation a chaque itération).

Original Perturbated

Pred: 100.00% Pred: 0.01%

Perturbation (¥255)

La figure ci-dessus montre a gauche, une image de deepfake issue du jeu de données.
Notre modele prédit que c’est un deepfake a 100%. Au milieu, il y a la perturbation
calculée par PGD. Nous l'avons multipliée par 255 de maniére a mieux la visualiser.
Finalement, limage de droite correspond a loriginal aprés application de la
perturbation. Le modeéle prédit l'image perturbée comme étant vraie a 99.9%. Nous
pouvons donc dire que l'attaque a été réussie. Les parameétres utilisés sont les suivants
:e=10% k=5eta=107,

Les facteurs
d’intensité de perturbation
(e et o) sont bien plus
faibles que lors de
attaque sur les données
du MNIST. Cela découle
directement du fait que
image est plus étendue.
Ainsi, la proportion de 40 7
'image a modifier est bien
inférieure a celle d’une 20 -
image provenant du MNIST

Précision en fonction d's

100 4

80 A

60

Précision %

pour un succes d’attaque 0

T . 0.0605 U.Otl)l(] 0.0&)15 0.0620 0.0625 O.OIDBO 0.0&)35 0.0640
similaire. Le graphique

£
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présenté ci-dessus illustre bien Uinfluence de 'amplitude de la perturbation totale sur
le succes de lattaque. Il a été généré a partir d’'une trentaine d’images pour lesquelles
le nombre d’itérations était fixé a 5. On remarque que méme pour une petite

Précision en fonction de K

100 +

80

60

Précision %

40

20 4

de lattaque.

perturbation, l'attaque
reste tres efficace.

Le graphique ci-contre a
été généré de la méme
maniere que le
précédent. Il présente
'efficacité de lattaque
en fonction du nombre
d’itérations quand
lamplitude de la
perturbation totale (€)
est réglée 4 5 x 10 .
Sans surprise, nous
remarquons que le
nombre d’itérations est
fortement lié¢ au succes

D’une maniére générale, il est essentiel d’appréhender la maniére dont les
différents parameétres influent sur lefficacité globale de lattaque ainsi que sur la
discrétion de la perturbation générée. Nous le verrons par la suite, cette
compréhension s’est avérée particulierement utile quand nous avons intégré PGD dans

le but de générer des UAP.
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b/ DeepFool
Application

De la méme maniere que pour PGD, DeepFool a été intégrée sans entrave
particuliere. Nous avons choisi d’intégrer la version par défaut de cette attaque, a
savoir, la version non ciblée. Le fonctionnement particulier de DeepFool ne nécessite
que tres peu de parameétres, leur réglage a donc été rapide. On retrouve un nombre
d’itérations maximum ainsi qu’une valeur d’overshoot qui, rappelons-le, spécifie la
marge avec laquelle la frontiere doit étre dépassée.

Le temps d’exécution passe alors de 0.5s (attaque sur une image du MNIST) a
4s. Cette différence est plus importante que dans le cas de PGD. Cela découle du fait
que les réglages de l'attaque n’ont pas été modifiés.

Résultats

Original Perturbated
Pred: 100.00% Perturbation (*1000) Pred: 47.61%

Sur la figure ci-dessus, nous avons, a gauche, une image de deepfake non
modifiée issue du jeu de données. Elle est prédite comme étant un deepfake avec une
probabilité de 100%. La perturbation calculée par DeepFool est au milieu. Nous 'avons
multiplié par un facteur 1000 afin de la rendre visible. Finalement, a droite, nous avons
Ulimage perturbée par DeepFool. Elle est prédite comme étant réelle avec une
probabilité d’environ 52%. L'attaque fonctionne bien, le modele a été leurré avec
succes. L'attaque a été réalisée avec un parameétre overshoot réglé a 0.02 et un nombre
d’itérations maximum fixé a 10. Ce parametre visant a limiter le nombre d’itérations
influe directement sur la réussite de l'attaque. En effet, comme présenté dans le
graphique ci-dessous, la précision du modéle évolue rapidement puis sature apres la
cinquieme itération. Maitriser ce parameétre, c’est limiter le temps de calcul relatif a
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attaque en réduisant

, ) . Précision en fonction du nombre d'itérations max
legerement son efficacite.

Comparer lefficacité

100 -

d’'une attaque passe par
deux points essentiels. Le 80 1
premier consiste a vérifier si
le classifieur est 60 -

correctement trompé. Dans

Précision %

notre cas, nous pouvons 40 4

comparer en utilisant la
prédiction du modele. Le

20 A
second concerne la qualité

de la perturbation. En clair,

. ’ ’ ’ 0 T T T T T T
“Est-ce que l'image générée 1 5 3 4 5 6 7 8 9

est assez discréte pour Iterations max

passer inapercue a l'ceil

humain ?”. Cette comparaison peut étre réalisée de maniére précise, en utilisant le
score MS-SSIM. Si le score de deux images est proche de 1, c’est qu’elles sont tres
similaires. Au contraire, un score avoisinant 0 sera retourné si les images sont
radicalement différentes. Nous utilisons donc ce score pour comparer la discrétion des
attaques entre elles. Ainsi, dans le cas de la figure présentée dans la partie PGD, le
score de similarité entre les deux images est de 99.966%. Dans le cas de DeepFool, ce
score monte a 99.998%. Cela découle directement de la maniére d’opérer de l'attaque
: calculer la perturbation minimale, suffisante pour changer la classe prédite.
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c/ UAP

UAP étant un algorithme qui se repose sur des attaques adversariales telles que
DeepFool ou PGD, nous l'avons adapté facilement en utilisant les nouvelles versions
des attaques qu’il intégre.

Le nombre d’images utilisées pour générer 'UAP en utilisant les algorithmes
PGD et DeepFool s’est rapidement retrouvé limité. En effet, pour une perturbation
universelle basée sur 784 images, le temps de calcul s’élevait a plusieurs heures.

1- PGD

Nous avons généré plusieurs perturbations universelles avec plusieurs
parameétres. Finalement, 'UAP qui s’est révélé étre la plus efficace a été générée avec
les parameétres de PGD réglés de cette maniére : € = 0.02, o = 107 et K = 100.

Original Perturbated
Pred: 100.00% Perturbation (¥20.0) Pred: 4.02%

La figure ci-dessus montre les résultats de lattaque. A partir d’'une image
originale (a gauche) prédite comme étant un deepfake a 100%, nous appliquons la
perturbation universelle calculée au préalable (image du milieu, nous lavons
augmenté afin de mieux la visualiser). Finalement, nous obtenons l'image présente a
droite, prédite comme étant réelle avec une probabilité de 96%. Nous pouvons alors
dire que l'attaque fonctionne dans ce cas. Nous avons ensuite calculé le fooling rate sur
un échantillon de 1632. C’est de cette maniére que nous avons obtenu un score égal a
97.24%.

Le point faible général des attaques universelles est que 'exemple adversarial
est peu similaire a l'image originale. Dans notre cas, le score SSIM moyen est de
96.44%, avec un minimum de 92.887%, ce qui est légérement plus faible que les
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attaques individuelles mais reste raisonnablement peu visible. A titre d’exemple, le
score de similarité entre les deux images ci-dessus est de 98.147%.

En regardant bien la perturbation générée, nous remarquons la présence d’une
bande claire en haut de l'image. Celle-ci est causée par le prétraitement de notre jeu
de données : lorsque le visage est trop proche de la bordure haute de l'image d’origine,
le recentrage effectué pour améliorer les performances du modele entraine
'apparition d’une bande noire.

2- DeepFool

Tout comme pour PGD, nous avons testé plusieurs paramétres pour générer
'UAP. DeepFool possédant moins de parametres, cette étape a été plus rapide. Nous
avons atteint le fooling rate cible de 90% pour 'ensemble des 784 images sur
lesquelles nous avons généré la perturbation. Pour cela, le parameétre overshoot était
réglé a 0.3, dans le but d’obtenir une UAP générale, fonctionnant le mieux possible sur
des images absentes du support de calcul.

Original Perturbated
Pred: 100.00% Perturbation (*100.0) Pred: 9.48%

La figure ci-dessus montre lapplication de la perturbation calculée au préalable sur
une image classifiee comme étant un deepfake a 100% (image de gauche). La
perturbation (image du milieu) a été augmentée cinqg fois plus que celle présentée
dans la partie précédente. Le score SSIM de ces images est de 99.941%. Cette forte
similarité s’explique par le fonctionnement de lalgorithme de DeepFool qui,
rappelons-le, cherche a chaque itération la perturbation minimale pour franchir la
frontiere de décision. Le leurre généré est alors tres spécifique aux images support.
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De la méme maniéere qu’avec la génération de 'UAP en utilisant PGD, nous avons
évalué cette perturbation sur un ensemble de 1632 images. Nous avons obtenu un
fooling rate égal a 82.97%. Cela signifie que dans 17% des cas, 'UAP a échoué a faire
changer la classe prédite par le modele. On comprend alors que la perturbation est
certes plus discréte que celle générée dans la partie précédente (on parle d’un score
de similarité moyen supérieur a 99%). Toutefois, son efficacité reste limitée.

En effet, nous remarquons que la perturbation générée se concentre davantage
sur la zone du visage, qui est plus a méme de changer. Nous sommes d’ailleurs
capables de distinguer la zone des yeux.

Notons que sans l'étape cruciale d’alignement des visages en fonction des yeux,
la perturbation universelle obtenue n’aurait pas été aussi efficace.

3- Essais en black-box

L'une des particularités des UAP, telles qu’elles sont décrites par
Moosavi-Dezfooli, Fawzi, Fawzi et Frossard’, est qu’elles conservent une bonne
efficacité méme en changeant de modele. Cela les rend intéressantes pour des
attaques en “black-box”, c’est-a-dire sans acces au fonctionnement interne du modele.

C’est dans cette optique que, d’apres l'idée de nos encadrants, nous avons
essayé de tromper un modéle de détection de deepfakes disponible en ligne. Pour
cela, nous avons appliqué les UAP générées a partir de notre modéle sur des images de
deepfakes générées par un outil en ligne. Les tests qui suivent ont été réalisés afin de
valider cette propriété dans un cadre réaliste et de tester lefficacité de nos
perturbations sur un autre systeme de détection.

Nous nous sommes donc dans un premier temps servi de l'outil aifaceswap™®
pour générer des deepfakes en faisant un face swap des visages de célébrités. Dans la
figure ci-dessous, un exemple avec Céline Dion et Donald Trump.

 Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., & Frossard, P. (2016). Universal adversarial perturbations.

arXiv. https://arxiv.org/abs/1610.08401
10 Swap face with Ai Online. AI Face Swap. (n.d.). https://aifaceswap.io/
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Nous avons ensuite testé nos attaques adversariales sur le modéle de détection
de deepfake proposé par faceonlive.'* Pour cela, nous avons appliqué le méme
prétraitement que pour les images de notre précédent jeu de données.

Likely Face Manipulated

Mo Deepfake Face Manipulated

Mot likely Deepfake

Mo Deepfake Real Face

Likely Face Manipulated

Mo Deeplfake Face Manipulated

<

&

1 FaceOnLive. (n.d.). Deepfake Detector - a Hugging Face Space by FaceOnLive.
https://huggingface.co/spaces/FaceOnLive/Deepfake-Detector
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Comme nous pouvons le constater, nous sommes capables de tromper le
systéme, cela en appliquant sur 'image la perturbation universelle précédemment
générée avec PGD.

En revanche, nos essais avec la perturbation universelle générée par DeepFool
se sont révélés moins concluants, n’affectant presque pas la prédiction du systéme.

Ces résultats viennent corroborer I’hypothese selon laquelle UAP-PGD est plus
facilement transférable que UAP-DeepFool, le bruit de ce premier étant moins
spécifique aux images sur lesquelles il a été calculé. Aussi, la perturbation obtenue par
PGD cherche a radicalement faire changer la prédiction du modele. Tandis que celle
calculée par DeepFool a pour objectif d’étre la plus fine possible, juste assez pour
changer la classe predite.
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Conclusion

Au cours de ce projet, nous avons, dans un premier temps, étudié différents
types d’attaques adversariales et leur fonctionnement, puis nous les avons appliquées
a un modele de détection de deepfake par face swapping. Lobjectif était d’évaluer
dans quelle mesure ces attaques pouvaient dégrader les performances du détecteur
sans altérer visiblement les images.

Nous avons été surpris par lefficacité de ces attaques. Certaines se sont
révélées tres performantes, avec des perturbations quasiment imperceptibles pour
l'ceil humain. Cela met en évidence que les systemes de détection de deepfakes,
méme s’ils constituent une premiere barrieére contre les menaces qu’ils représentent,
restent vulnérables.

Des améliorations restent encore a apporter vis-a-vis du travail fait : les
contraintes temporelles du projet et la puissance de calcul de notre matériel ont limité
nos essais, et nous aurions aimé pouvoir expérimenter l'efficacité de ces attaques sur
des modeles de détection de deepfake modernes, avec des jeux de données plus
récents.

Au-dela de ces perspectives d’amélioration, une piste de poursuite du projet se
dessine : l’évaluation des stratégies de défenses contre ces attaques. En effet,
maintenant que nous avons mis en lumiére les vulnérabilités des systemes de
détection de deepfakes, il nous semble légitime de réfléchir a comment les renforcer.

Un exemple de technique de défense consiste a ajouter des images perturbées
dans le jeu de données servant a l'entrainement du classifieur. On parle alors
d’entrailnement adversarial. D’autres approches se concentrent plutot sur la détection
préalable des perturbations, avant I'’évaluation par le modéle.

La mise en place de telles mesures est indispensable dans un contexte ou les
attaques se renouvellent et se complexifient constamment. La défense ne peut se
contenter de simplement réagir : elle doit faire preuve d’anticipation et d’innovation.
L'enjeu final serait de conserver une robustesse afin que les systéemes de détection
aient toujours une longueur d’avance sur les méthodes de contournements récentes.
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Finalement, ce projet en collaboration avec le laboratoire du GREYC s’est révélé
trés enrichissant, et nous a permis de renforcer nos compétences a la fois techniques
et méthodologiques.

D’abord, en intelligence artificielle, par la maitrise de techniques dites
“white-box”. Nous avons également affermi notre compréhension des chaines
d’attaque mises en place par des acteurs malveillants. La premiére partie nous a
permis de perfectionner nos compétences rédactionnelles ainsi que notre esprit
critique. En outre, les défis relevés par le manque de puissance de calcul nous ont
permis d’affiner nos connaissances en infonuagique.

Nous vous remercions de votre lecture.
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